Perbandingan Algoritma Untuk Analisis Sentimen Pada Twitter Transportasi Umum Commuterline

Rizka Novaneliza(1*), Fitri Handayani(2), Reja Juniarsah Suhandar(3), Hendro Surono(4), Nadya Salma Azzahra(5), Dya Nadilla(6),

(1) Universitas Nusa Mandiri, Indonesia
(2) Universitas Nusa Mandiri, Indonesia
(3) Universitas Nusa Mandiri, Indonesia
(4) Universitas Nusa Mandiri, Indonesia
(5) Universitas Nusa Mandiri, Indonesia
(6) Universitas Nusa Mandiri, Indonesia
(*) Corresponding Author

Abstract


KRL Commuter Line is a common transportation that is in great demand by the public. Affordable rates are the reason why commuter lines are in high demand. With so many users of this transportation service, the KRL Commuter Line must continue to improve services. In the process, there are often obstacles that cause users to make complaints. Users of Commuter Line often make complaints or give their opinions via social media twitter. In this study, sentiment analysis was carried out to Commuter Line users. Sentiment analysis is performed for the classification of tweets or tweets regarding commuter line service into positive and negative sentiments. The focus of this study is to compare the Support Vector Machine (SVM), SVM-Particle Swarm Optimization, Naive Bayes and NB-Adaboost algorithms. The data used was 1001 tweet data on Twiiter @CommuterLine. The comparison results obtained average values for SVM: 78.15%, SVM-PSO: 79.47%, NB: 76.67% and NB-Adaboost: 78.80%. So that it can be seen that the classification of algorithms using optimization methods can increase the average value. In this study, the SVM algorithm with the PSO optimization method is a better classification used compared to the SVM algorithm, Naive Baiyes and Naive Bayes with AdaBoost optimization.

Full Text:

PDF

References


F. Jhon, P. Sitorus, F. Fassa, and F. Nurhidayah, “Analisis Kesediaan Membayar Kereta Commuter Line Cikarang,” Pros. Semnastek 2018, pp. 1–11, 2018.

M. Saraswati and D. Riminarsih, “Analisis Sentimen Terhadap Pelayanan Krl Commuterline Berdasarkan Data Twitter Menggunakan Algortima Bernoulli Naive Bayes,” J. Ilm. Inform. Komput., vol. 25, no. 3, pp. 225–238, 2020.

V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “Implementasi Twitter Sentiment Analysis Untuk Review Film Mengguna Algoritma Support Vector Machine,” J. Inform. Polinema, vol. 4, no. 2, p. 93, 2018.

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020.

Andreyestha and A. Subekti, “Analisis Sentiment pada Ulasan Film Dengan Optimasi Ensemble Learning,” J. Inform. Univ. Bina Sarana Inform., vol. 7, no. 1, pp. 15–23, 2020.

N. Tri Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes, KNN, dan Decision Tree Terhadap Analisis Sentimen Transportasi KRL Commuter Line,” J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti J. Teknol. Inf., vol. 18, no. 2, pp. 173–184, 2021.

A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jdmsi, vol. 2, no. 1, pp. 31–37, 2021.

M. R. Adrian, M. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021.

N. Hafidz and D. Yanti Liliana, “Klasifikasi Sentimen pada Twitter Terhadap WHO Terkait Covid-19 Menggunakan SVM, N-Gram, PSO,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 213–219, 2021.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 231–237, 2021.

R. Y. Hayuningtyas and R. Sari, “Analisis Sentimen Opini Publik Bahasa Indonesia Terhadap Wisata Tmii Menggunakan Naïve Bayes Dan Pso,” J. Techno Nusa Mandiri, vol. 16, no. 1, pp. 37–42, 2019.

Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5,

no. 1, pp. 157–163, 2021.

S. Mulyati, Y. Yulianti, and A. Saifudin, “Penerapan Resampling dan Adaboost untuk Penanganan Masalah Ketidakseimbangan Kelas Berbasis Naϊve Bayes pada Prediksi Churn Pelanggan,” J. Inform. Univ. Pamulang, vol. 2, no. 4, p. 190, 2017.

L. Qadrini, A. Seppewali, and A. Aina, “Decision Treedan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial,” J. Inov. Penelit., vol. 2, no. 7, pp. 1959–1965, 2021.




DOI: http://dx.doi.org/10.30645/j-sakti.v7i1.566

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats