Implementasi Algoritma C4.5 untuk Memprediksi Tingkat Ketepatan Kelulusan Mahasiswa

Imrah Sari(1*), Sarjon Defit(2), S Sumijan(3),

(1) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(*) Corresponding Author

Abstract


Timeliness of graduation not only reflects the competence of graduates but also affects the assessment of study programme accreditation. To achieve this goal, it is important to predict and classify the timeliness of graduation to support more effective academic decision making. In this research, the Knowledge Discovery in Database (KDD) process is used, which aims to find knowledge from big data. One of the main stages in KDD is data mining, which focuses on pattern extraction with various algorithms. This research uses the C4.5 algorithm, a classification method that builds a decision tree to identify attributes that affect the timeliness of student graduation. This study uses data from students in 2017, 2018, and 2019 from the Bachelor of Nursing and Bachelor of Public Health study programmes at Syedza Saintika University, with a total sample of 46 student records. The C4.5 algorithm is applied to form a decision tree model, which produces classification rules based on attributes such as Grade Point Average (GPA), Study Programme, Gender, and Region of Origin. The results of the C4.5 algorithm implementation show a prediction accuracy of 89.13%, with GPA as the most dominant factor in influencing graduation accuracy. This research proves that the C4.5 algorithm is effective in predicting the timeliness of student graduation.

Full Text:

PDF

References


I. W. M. Putri, R. Rusdah, L. Suryadi, and D. Anubhakti, “Prediksi Kelulusan Mahasiswa Fakultas Teknologi Informasi ISB Atma Luhur Menggunakan Algoritma C4.5,” J. SISFOKOM (Sistem Inf. dan Komputer), vol. 12, no. 03, pp. 363–369, 2023.

F. M. Almufqi and A. Voutama, “Perbandingan Metode Data Mining Untuk Memprediksi Prestasi Akademik Siswa,” J. Tek., vol. 15, no. 1, pp. 61–66, 2023, doi: 10.30736/jt.v15i1.929.

J. Donga, A. Sarunggalo, N. Koru, and G. Lante, “G-Tech : Jurnal Teknologi Terapan,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/1823/1229

S. Lestari, Yulmaini, Aswin, Sylvia, Y. A. Pratama, and Sulyono, “Implementation of the C4.5 algorithm for micro, small, and medium enterprises classification,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, pp. 6707–6715, 2022, doi: 10.11591/ijece.v12i6.pp6707-6715.

N. H. Purnomo, B. Pamungkas, and C. Juliane, “Penerapan Algoritma C4 . 5 Untuk Klasifikasi Tren Pelanggaran Kendaraan Angkutan Barang dengan Metode CRISP-DM,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 30–40, 2023, doi: 10.30865/mib.v7i1.5247.

T. H. Hasibuan and D. Mahdiana, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta,” Skanika, vol. 6, no. 1, pp. 61–74, 2023, doi: 10.36080/skanika.v6i1.2976.

E. Prasetyaningrum and P. Susanti, “Analisa Tingkat Kepuasan Pelanggan Pada Percetakan Cv. Mega Media Menggunakan Algoritma C4.5,” Sisfotenika, vol. 13, no. 1, pp. 65–75, 2023.

Rovidatul, Y. Yunus, and G. W. Nurcahyo, “Perbandingan algoritma c4.5 dan naive bayes dalam prediksi kelulusan mahasiswa,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 193–199, 2023, doi: 10.37859/coscitech.v4i1.4755.

N. A. Prahastiwi, R. Andreswari, and R. Fauzi, “Students Graduation Prediction Based on Academic Data Record Using the Decision Tree Algorithm C4.5 Method,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 8, no. 3, pp. 295–304, 2022, doi: 10.33330/jurteksi.v8i3.1680.

K. A. Putri, D. Febriawan, and F. N. Hasan, “Implementation of Data Mining to Predict Student Study Period with Decision Tree Algorithm ( C4 . 5 ),” vol. 13, pp. 39–47, 2024.

S. Sains, P. Kelulusan, M. Di, P. Kampar, A. Saputra, and T. A. Fitri, “Penerapan Data Mining Algortima C4 . 5 Dalam Memprediksi,” 2023.

N. Khasanah and A. Salim, “Rachman Komarudin 4) , Yana Iqbal Maulana 5) 1) Teknik Informatika, Fakultas Teknologi Informasi, Universitas Nusa Mandiri 2,3) Sistem Informasi, Fakultas Teknologi Informasi, Universitas Bina Sarana Informatika 4) Sistem Informasi, Fakultas Teknologi Inf,” Fak. Teknol. Inf., vol. 13, no. 3, pp. 207–214, 2022.

A. F. Firdaus, R. Saedudin, R. Andeswari, and U. Telkom, “Implementasi Metode Klasifikasi Naive Bayes Implementation of Naive Bayes Classification Method in Predicting,” vol. 8, no. 5, pp. 9274–9279, 2021.

P. Pangestu, R. Novita, and M. Mustakim, “Systematic Literature Review: Perbandingan Algoritma Klasifikasi,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 2, p. 431, 2023, doi: 10.35314/isi.v8i2.3698.

N. Widiastuti, A. Hermawan, and D. Avianto, “Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Minat Pencari Kerja,” J. Teknoinfo, vol. 17, no. 1, pp. 1–9, 2023.

N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.

A. Purwanto and H. Widi Nugroho, “Jurnal Teknoinfo,” Tong Sampah Pint. Dengan Perintah Suara Guna Menghilangkan Perilaku Siswa Membuang Sampah Sembarangan Di Sekol., vol. 14, pp. 48–58, 2023, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/article/view/336/329

F. Solikhah, M. Febianah, A. L. Kamil, W. A. Arifin, and Shelly Janu Setyaning Tyas, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” Tematik, vol. 8, no. 1, pp. 96–103, 2021, doi: 10.38204/tematik.v8i1.576.

L. Tastilia, D. A. Megawaty, and A. Sulistiyawati, “Sistem Informasi Administrasi Akademik Untuk Meningkatkan Pelayanan Terhadap Siswa (Study Kasus : Sma Pgri Katibung),” J. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 63–69, 2022.




DOI: https://doi.org/10.30645/kesatria.v5i4.506

DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.506.g501

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: