Klasifikasi Penanganan Keluhan Masyarakat Kota Probolinggo Menggunakan Algoritma Naive Bayes

Dyah Ariyanti, Kurnia Iswardani, Silvia Rafidah

Abstract


Handling public complaints of Probolinggo city, known as “Laporo Rek”, requires more time to provide the report to the relevant office. Its caused by the administrators sometimes doesn't know where the Public complaints to addressed. Using the naïve Bayes algorithm in Text Mining for Public Complaints of Probolinggo city can help the administrators to work more effectively and efficiently. The processing data of Public Complaints of Probolinggo city through several stages of text mining, which are token, filter, steaming, and analyzing. After completed the stage, the data will be classified using the naïve Bayes algorithm. The naïve Bayes algorithm calculation will view the result of each data class of Public Complaints of Probolinggo city, which is entered by phone, text message complaints. The research using this method has resulted in accuray 95%; it means each public complaints of Probolinggo city can be classified by each government agency in Probolinggo.

Full Text:

PDF

References


Annur, Haditsah. 2018. Klasifikasi Masyarakat Miskin Menggunakan Metode Naïve Bayes. ILKOM Jurnal Ilmiah. Vol.10 No.02. ISSN 2548-7779.

Albert, J. 2009, Bayesian Computation wit R, Springer NY.

Devita, R.N, Herwanto, H.W., Wibawa A.P. 2018. Perbandingan Kinerja Metode Naïve Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa Indonesia. JTIIK ( Jurnal Teknologi Informasi dan Ilmu Komputer) Vol.05 No.04. ISSN 2528-6579.

Fadillah, AP, Hardiyana, Bela. 2018. Penerapan Naïve Bayes Cllasifier untuk Pemilihan Konsentrasi Mata Kuliah. JATI (Jurnal Teknologi dan Informasi). Vol.08 No.02. ISSN 2655-6839.

Han, J., and Kamber M. 2000. Data Mining, Concept and Techniques, New York, NY : Mogan Kaufman.

Kim. J. and Thoma GR. 2008. Extracting Bibliographic Information from Biomedical Online Articles, International Conference On Data Mining. Las Vegas, Nevada, USA.

Niloy, NH., Mai, Navid, 2018. Naïve Bayes Classifier and Classification Trees for the Predictive Accuracy of Probability of Default Credit Card Clients. American Journal of Data Mining and Knowledge Discovery, Vol.03 Issue 1.

Rivki, M. & Bachtiar, A.M., 2017. Implementasi Algoritma K-Nearest Neighbor dalam Pengklasifikasian Follower Twitter yang Menggunakan Bahasa Indonesia. Jurnal Sistem Informasi, 13(1), Pp.31–37.




DOI: http://dx.doi.org/10.30645/j-sakti.v4i2.234

Refbacks

  • There are currently no refbacks.


J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan :

View My Stats