Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman KUR Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation

Agus Perdana Windarto

Abstract


The purpose of this study was to develop a decision support system that can facilitate in determining the eligibility of borrowers KUR (Kredit Usaha Rakyat) through predictive use based on existing data and presents various alternative solutions in the selection of a feasibility customers in KUR loan. This study uses Artificial Neural Network applications using Backpropogation method. Criteria used as an assessment in this study is Collateral, Capacity, Loan Application Form, Income and Establishment Business License (Business License). The decision making process consists of two (2) phases where the first phase and pattern recognition, the second phase is forecast feasibility KUR customers. pattern recognition and predictive feasibility KUR customers using different data with the same process using training and testing. The conclusion by the two architectural models 5-2-1 and 5-3-1, obtained 93% accuracy with 0.0009995807 MSE is the 5-2-1 model architecture. This model is used to predict the feasibility of KUR customers with accuracy> 90% and MSE truth 0.0009566280.

Full Text:

PDF

References


M. Dahria, “Pengantar Kecerdasan Buatan ( Artificial Intelligence),” Pengantar Kecerdasan Buatan, vol. 5, no. 2, pp. 1–5, 1991.

E. Marleni Anike, Suyoto, “Pengembangan sistem jaringan syaraf tiruan dalam memprediksi jumlah dokter keluarga menggunakan Backpropagation,” vol. 2012, no. Sentika, pp. 209–216, 2012.

D. Maru’ao, “Neural Network Implementation in Foreign Exchange Kurs Prediction,” Gunadarma Univ. Fac. Ind. …, 2010.

A. Gupta and M. Shreevastava, “Medical Diagnosis using Back propagation Algorithm,” Int. J. Emerg. Technol. Adv. Eng., vol. 1, no. 1, pp. 55–58, 2011.

Z. A. Matondang, “Jaringan Syaraf Tiruan Dengan Algoritma Backpropagation Untuk Penentuan Kelulusan Sidang Skripsi” Pelita Inform. Budi Darma, vol. IV, no. 1, 2013.

A. Jumarwanto, “Aplikasi Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Penyakit Tht Di Rumah Sakit Mardi Rahayu Kudus,” J. Tek. Elektro, vol. 1, no. 1, pp. 11–21, 2009.

W. M. Dessy and A. Irawan, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah,” J. Komput. dan Inform., vol. 1, no. 1, pp. 45–51, 2012.




DOI: http://dx.doi.org/10.30645/j-sakti.v1i1.25

Refbacks

  • There are currently no refbacks.


J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan :

View My Stats