Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter

Dwi Normawati, Surya Allit Prayogi

Abstract


Twitter is one of the social media that is currently in great demand by internet users. The number of tweets circulating on Twitter is not yet known whether these tweets contain more positive, negative, and neutral opinions. For that we need a system that can process data by applying sentiment analysis. This study uses the Naïve Bayes Classifier (NBC) method to analyze the level of sentiment towards data carried out by crawling on Twitter. The data studied as a simple case study uses only 8 tweet data which is divided into 5 training data and 3 test data. The data is processed using the preprocessing stage, then classified using the NBC method, the calculation of performance uses confusion matrix techniques. This study resulted in a structured exposure to the process and results of NBC implementation and performance testing using the confusion matrix which obtained 82% accuracy, 93% precision, and 52% recall. However, these results are more focused on ease explaining for each stage and process in more detail, not on the numbers obtained. Research with larger data will be carried out later by developing a computer-based application system.

Full Text:

PDF

References


Muhammad Sufyan Abdurrahman (2020) Penetrasi Internet Indonesia pada 2020, alenia.id. Tersedia pada: https://www.alinea.id/kolom/tantangan-penetrasi-internet-indonesia-pada-2020-b1ZJC9smS (Diakses: 7 Agustus 2020).

Priska Sari Pratiwi (2017) Ahok Divonis Dua Tahun Penjara, CNN Indonesia. Tersedia pada: https://www.cnnindonesia.com/nasional/20170509080949-12-213328/ahok-divonis-dua-tahun-penjara (Diakses: 13 Maret 2020).

Dewan Komisaris | PT Pertamina (Persero) (2019). Tersedia pada: https://www.pertamina.com/id/dewan-komisaris (Diakses: 25 November 2019).

Rahmat Burhanudin (2018) Mengenal Sentiment Analysis, https://mamat.co/. Tersedia pada: https://mamat.co/mengenal-sentiment-analysis/ (Diakses: 24 September 2019).

Buntoro, G. A. (2017) “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer Journal, 2(1), hal. 32–41.

Nurhuda, F., Widya Sihwi, S. dan Doewes, A. (2016) “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Teknologi & Informasi ITSmart, 2(2), hal. 35.

Nurirwan Saputra, Teguh Bharata Adji, A. E. P. (2015) “Analisis Sentimen Data Presiden Jokowi dengan Pre-Processing Normalisasi dan Stemming Menggunakan Metode Naive Bayes dan SVM,” Jurnal Dinamika Informatika, 5(November), hal. 12.

Utami, L. A. (2017) “Melalui Komparasi Algoritma Support Vector Machine dan K-Nearest Neighbor Berbasis Particle Swarm Optimization,” Jurnal Pilar Nusa Mandiri, 13(1), hal. 103–112.

Oktasari, L., Chrisnanto, Y. H. dan Yuniarti, R. (2016) “Text Mining dalam Analisis Sentimen Asuransi Menggunakan Metode Niave Bayes Classifier,” Prosiding SNST, 7, hal. 37–42.

Eka Sembodo, J., Budi Setiawan, E. dan Abdurahman Baizal, Z. (2016) “Data Crawling Otomatis pada Twitter,” (September), hal. 11–16. doi: 10.21108/indosc.2016.111.

Yusnitasari, T. et al. (2017) “Analisis Sentimen Terhadap Review Restoran Fish Streat pada Aplikasi Zomato Menggunakan Stemming Nazief Adriani dan Naive Bayes Classifier,” Prosiding Setrinov, 3, hal. 163–174.

Saputro, P. H., Aristin, M. dan Tyas, Dy. L. (2017) “Klasifikasi Lagu Daerah Indonesia Berdasarkan Lirik Menggunakan Metode TF-IDF dan Naive Bayes Classifier,” Jurnal Teknoloi Informatika dan Terapan, 4(1), hal. 45–50.

Putra, D. dan Wibowo, A. (2020) “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” 2, hal. 84–92.




DOI: http://dx.doi.org/10.30645/j-sakti.v5i2.369

Refbacks

  • There are currently no refbacks.


J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan :

View My Stats