Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular

Wilda Imama Sabilla(1*), Candra Bella Vista(2), Dhebys Suryani Hormansyah(3),


(1) Politeknik Negeri Malang
(2) Politeknik Negeri Malang
(3) Politeknik Negeri Malang
(*) Corresponding Author

Abstract


Cardiovascular disease is one of the leading causes of death in the world. The risk of death is important to predict to determine treatment or behavior and lifestyle changes in cardiovascular patients. Medical record data of cardiovascular patients can be used as input in predicting life expectancy. This study offers the construction of a life expectancy prediction system for cardiovascular patients. Prediction using multilayer perceptron method by testing various scenarios. In addition, feature selection methods, namely correlation based filter (CBF), linear discriminant analysis (LDA), and principal component analysis (PCA) are applied to obtain relevant features to improve classification performance. Based on the experiments conducted, the average accuracy using CBF and LDA feature selection is 84% and 84.7%, respectively. In the best trial, CBF is able to produce accuracy, precision, recall, and f-measure with value of 91.7% 85% 89.5% and 87.2%. Based on these results, it can be concluded that this prediction system is able to provide fairly accurate results

Full Text:

PDF

References


P. Kabo, Penyakit jantung koroner penyakit atau proses alamiah, Jakarta: Badan Penerbit FKUI, 2014.

K. K. RI, Pusat Data Dan Informasi Kementrian Kesehatan Ri : Situasi Kesehatan, Jakarta: Kementerian Kesehatan, 2014.

N. L. Fitriyani, M. Syafrudin, G. Alfian and J. Rhee, "HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System," IEEE Access, vol. 8, pp. 133034-133050, 2020.

P. D. S. K. I. PERKI, "Indonesian Heart Association," 2019. [Online]. Available: http://www.inaheart.org/news_and_events/news/2019/9/26/press_release_world_heart_day_perki_2019. [Accessed 22 January 2020].

F. Farzadfar, "Cardiovascular disease risk prediction models: challenges and perspectives," The LANCET Global Health, vol. 7, no. 10, pp. 1288-1289, 2019.

S. H. A. Aini, Y. A. Sari and A. Arwan, "Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naïve Bayes," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 2546-2554 , 2018.

O. O. Oladimeji and O. Oladimeji, "Predicting Survival of Heart Failure Patients Using Classification Algorithms," Journal of Information Technology and Computer Engineering, vol. 4, no. 2, pp. 90-94, 2020.

D. Christopher, R. Prabhakar and S. Hinrich, "An Introduction To Information Retrieval," Introduction to information retrieval, pp. 151-177, 2008.

V. N. G. Raju, K. P. Lakshmi, V. M. Jain, A. Kalidindi and V. Padma, "Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification," in Third International Conference on Smart Systems and Inventive Technology, 2020.

I. H. Witten, E. Frank, M. A. Hall and C. Pal, Data Mining: Practical Machine Learning Tools and Techniques 4th Edition, Morgan Kaufmann, 2016.

M. Arifin, "IG-KNN untuk Prediksi Customer Churn Telekomunikasi," Jurnal SIMETRIS, vol. 6, pp. 1-10, 2015.

Y. Khourdifi and M. Bahaj, "Feature Selection with Fast Correlation-Based Filter for Breast Cancer Prediction and Classification Using Machine Learning Algorithms," in International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2018.

M. I. Khalid, T. Alotaiby, S. A. Aldosari, S. A. Alshebeili, F. S. Y. Al-Hameed, M. Almohammed and T. Alotaibi, "Epileptic MEG Spikes Detection using Common Spatial Patterns and Linear Discriminant Analysis," IEEE Access, vol. 4, 2016.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, 2006.

E. P. Cynthia and E. Ismanto, "Jaringan Syaraf Tiruan Algoritma Backpropagation dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau," Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, vol. 2, no. 2, pp. 83-98, 2017.




DOI: http://dx.doi.org/10.30645/j-sakti.v6i1.425

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats