Algoritma K-Means Untuk Segmentasi Kematangan Buah Jeruk Berdasarkan Kemiripan Warna

Mhd Furqan(1*), S Sriani(2), Atiqah Aulia(3),


(1) Universitas Islam Negeri Sumatera Utara
(2) Universitas Islam Negeri Sumatera Utara
(3) Universitas Islam Negeri Sumatera Utara
(*) Corresponding Author

Abstract


The condition of citrus fruits can be determined by looking at several parameters, one of which is color, larger pores, and even yellow skin. So far, the identification of the maturity level of citrus fruits by farmers and consumers has used manual techniques, for example paying attention to the color, pores and peel of the orange product. Such identification will be very large and fluctuating developmental days because people have visual impairments in recognizing, fatigue, and judgment on great development. Barriers to strategy guidance require innovations that can complete the development process impartially, and with clearer results. One of them is the segmentation process using yahoo k-means. The segmentation process aims to divide or separate the image into several (local) districts based on the specified attributes. The k-means algorithm will cluster data with similar attributes assembled into one set and data with various qualities assembled into different sets. From the results of taking pictures from 6 angles, namely front, back, top, bottom, and right and left using 8 datasets, it produces 48 images, and by testing the clustering results, ripe oranges produce 6 and 2 ripe.

Full Text:

PDF

References


F. G. Febrinanto, C. Dewi, and A. T. Wiratno, “Implementasi Algoritme K-Means Sebagai Metode Segmentasi Citra Dalam Identifikasi Penyakit Daun Jeruk,” vol. 2, no. 11, pp. 5375–5383, 2018.

M. Furqan, S. Sriani, and Y. K. Siregar, “Perbandingan Algoritma Contraharmonic Mean Filter dan Arithmetic Mean Filter untuk Mereduksi Exponential Noise,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 5, no. 2, pp. 107–115, 2020, doi: 10.14421/jiska.2020.52-05.

L. S. H. Mhd. Furqan, Sriani, “Klasifikasi Daun Bugenvil Menggunakan Gray Level Co-Occurrence Matrix dan K- Nearest Neighbor,” J. CoreIT, vol. 6, no. 1, pp. 22–29, 2020.

I. E. Y. Sari, M. Furqan, and S. Sriani, “Penerapan Metode Otsu dalam Melakukan Segmentasi Citra pada Citra Naskah Arab,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 59–72, 2020, doi: 10.30812/matrik.v20i1.658.

Y. Nasution, M. Furqan, and M. Sinaga, “Implementasi Steganografi Menggunakan Metode Spread Spectrum Dalam Pengamanan Data Teks Pada Citra Digital,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. 2, pp. 351–358, 2020, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/download/226/208.

X. Zheng, Q. Lei, R. Yao, Y. Gong, and Q. Yin, “Image segmentation based on adaptive K-means algorithm,” Eurasip J. Image Video Process., vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0309-3.

I. W. Angga, W. Kusuma, and R. L. Ellyana, “Penerapan Citra Terkompresi Pada Segmentasi Citra Menggunakan Algoritme K-MEANS,” pp. 65–74, doi: 10.21460/jutei.2018.21.65.

Anindya, “(K-Means Algorithm Implementation For Clustering Of Patients Disease In Kajen Clinic Of Pekalongan) Anindya Khrisna Wardhani Magister Sistem Informasi Universitas Diponegoro,” vol. 14, pp. 30–37, 2016.

Y. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means,” vol. 12, no. 2, pp. 148–157, 2016.

V. H. Pham and B. R. Lee, “An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm,” Vietnam J. Comput. Sci., vol. 2, no. 1, pp. 25–33, 2015, doi: 10.1007/s40595-014-0028-3.

P. Shan, “Image segmentation method based on K-mean algorithm,” Eurasip J. Image Video Process., vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0322-6.

Anharku, “Flowchart,” Ilmu Komputer.org, pp. 1–4, 2009.

W. M. P. Dhuhita, “Clustering Menggunakan Metode K-Means Untuk,” vol. 15, no. 2, 2015.

T. I. Saputra, R. Arianty, F. Ilmu, K. Universitas, J. Barat, and K. Clustering, “Implementasi Algoritma K-Means Clustering Pada Pendeteksian Warna Untuk Membantu Penderita Buta Warna,” no. 100, pp. 191–198, 2019.

marcel eka Putra, “Implementasi Algoritma K-Means Pada Membantu Penderita Buta Warna, Teknik Informatika – Universitas Komputer Indonesia Jurnal Ilmiah Komputer dan Informatika (KOMPUTA),” J. Ilm. Komput. dan Inform., vol. 01, 2019.

S. Hadianti and D. Riana, “Segmentasi Citra Bemisia Tabaci Menggunakan Metode K-Means,” Semin. Nas. Inov. dan Tren, p. 2018, 2018.

F. Fahmi, “Singuda Ensikom Special Issue 2013 : Image Processing Pengenalan Tingkat Kematangan Buah Pepaya Paya Rabo Menggunakan Pengolahan Citra Berdasarkan Warna RGB Dengan K-Means Clustering,” pp. 1–6, 2013.




DOI: http://dx.doi.org/10.30645/j-sakti.v6i1.437

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats