Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes

Rizaldi Azhar(1*), Adi Surahman(2), Christina Juliane(3),


(1) STMIK LIKMI Bandung
(2) STMIK LIKMI Bandung
(3) STMIK LIKMI Bandung
(*) Corresponding Author

Abstract


Cryptocurrency users are now increasing as the market becomes more and more attractive. In 2019 recorded around 139 million account users verified id cryptocurrency. Recently, it was enlivened by the emergence of #crypto on Twitter and had become a world trending topic. This gives rise to many opinions and opinions from twitter users. With so many twitter users' opinions on the hashtag, it is very difficult to know whether positive, negative or neutral sentiments are manual. This requires machine learning to be able to automate labeling, be it positive, neutral or negative sentiments. Machine learning used is by utilizing Python TextBlob. The results of automatic labeling using Python TextBlob from a total of 1032 tweets obtained 632 tweets or 61.24% containing positive sentiments, 296 neutral sentiments or 28.68% tweets and 104 negative sentiments or 10.07%. The test results using the Naïve Bayes algorithm with each testing data and training data are 0.2 and 0.8. From this test, the accuracy value is 71.98%, precision is 83.04%, recall is 60.88% and f1_score is 65.07%.

Full Text:

PDF

References


B. W. Sari and F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019, doi: 10.33480/pilar.v15i2.699.

S. Nurul, J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” vol. 5, no. 3, pp. 279–285, 2019.

Y. S. Mahardhika, E. Zuliarso, P. Studi, T. Informatika, F. T. Informasi, and U. Stikubank, “ANALISIS SENTIMEN TERHADAP PEMERINTAHAN JOKO WIDODO PADA MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAIVES BAYES,” no. 2015, pp. 409–413, 2018.

I. Bagus and P. Bhiantara, “Teknologi Blockchain Cryptocurrency Di Era Revolusi Digital,” Jl. Udayana Kampus Teng., no. 0362, p. 27213, 2018, [Online]. Available: http://pti.undiksha.ac.id/senapati.

I. Danco, “Jumlah Pengguna Crypto di Seluruh Dunia Meningkat 16%, Mencapai 106 Juta,” 2021. https://id.bitcoinethereumnews.com/crypto/number-of-crypto-users-worldwide-strikes-increase-of-16-hits-106m/.

F. I. Sulaiman, W. W. Winarno, and M. P. Kurniawan, “Perancangan Aplikasi Klasifikasi Sentimen Berbasis Web Terhadap Mata Uang Kripto,” 1384.

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi: 10.14421/jiska.2018.31-01.

A. M. Pudjajana and D. Manongga, “Sentimen Analisis Tweet Pornografi Kaum Homoseksual Indonesia Di Twitter Dengan Naive Bayes,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 313–318, 2018, doi: 10.24176/simet.v9i1.1922.

I. W. S. Nirawana and I. G. Indrawan, “Analisis Sentimen Pada Review Film Dengan Mengunakan Algoritma Klasifikasi Naive Bayes Berdasarkan Term Objects Keywords,” Semin. Nas. Pendidik. Tek. Inform. (SENAPATI 2016), no. Senapati, pp. 172–174, 2016.

J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Journal of Intelligent Systems and Computation 43,” pp. 43–49, 2019, [Online]. Available: https://t.co/9WloaWpfD5.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.

E. Mas’udah, E. D. Wahyuni, and A. A. Arifiyanti, “Analisis Sentimen: Pemindahan Ibu Kota Indonesia Pada Twitter,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 397–401, 2020.

R. Rosdiana, T. Eddy, S. Zawiyah, and N. Y. U. Muhammad, “Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar,” Proceeding SNTEI, pp. 87–93, 2019.

I. N. Husada, E. H. Fernando, H. Sagala, A. E. Budiman, and H. Toba, “Ekstraksi dan Analisis Produk di Marketplace Secara Otomatis dengan Memanfaatkan Teknologi Web Crawling,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 3, pp. 350–359, 2020, doi: 10.28932/jutisi.v5i3.1977.

A. Fathan Hidayatullah and A. Sn, “ISSN: 1979-2328 UPN "Veteran,” Semin. Nas. Inform., vol. 2014, no. semnasIF, pp. 115–122, 2014, [Online]. Available: http://www.situs.com.

N. Ruhyana, “Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil / Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes,” J. IKRA-ITH Inform., vol. 3, no. 1, pp. 94–99, 2019.

T. Jamaluddin, M. A. Bijaksana, and I. Asror, “Perbandingan Algoritma Sentencepiece BPE dan Unigram Pada Tokenisasi Artikel Bahasa Indonesia Pendahuluan Studi Terkait,” e-Proceeding Eng., vol. 7, no. 2, pp. 8323–8331, 2020.

R. Sari and R. Y. Hayuningtyas, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website,” Indones. J. Softw. Eng., vol. 5, no. 2, pp. 51–60, 2019, doi: 10.31294/ijse.v5i2.6957.

R. Parlika, S. I. Pradika, A. M. Hakim, and K. R. N. M, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” J. Ilm. Teknol. Inf. dan Robot., vol. 2, pp. 33–37, 2020.

M. Tri Anjasmoros and dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 489–498, 2020.




DOI: http://dx.doi.org/10.30645/j-sakti.v6i1.443

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats