Analisis Sentimen Menggunakan Metode Naive Bayes Berbasis Particle Swarm Optimization Terhadap Pelaksanaan Program Merdeka Belajar Kampus Merdeka

Erina Undamayanti(1*), Teguh Iman Hermanto(2), Ismi Kaniawulan(3),

(1) Sekolah Tinggi Teknologi Wastukancana Purwakarta
(2) Sekolah Tinggi Teknologi Wastukancana Purwakarta
(3) Sekolah Tinggi Teknologi Wastukancana Purwakarta
(*) Corresponding Author

Abstract


During the MBKM program running at several universities in Indonesia, several problems occurred, namely the implementation of the curriculum that did not have a reference, the disbursement of pocket money given was not on schedule, the policies of each partner were different, and the existence of the covid-19 pandemic. The way to find out public opinion or opinion about the MBKM program is to summarize public opinion on Twitter social media. This study aims to analyze the results of the classification of twitter users opinions on the MBKM program in Indonesia through sentiment analysis using the Naive Bayes method based on Particle Swarm Optimization. The research metodology carried out in this study was through the stages of data crawling, text preprocessing, feature extraction, classification, and evaluation. The data used in this study are 428 data. The results of the research in the form of sentiment analysis obtained are positive sentiments of 61.92%, it can be concluded that the MBKM program can be well received by the Twitter user community, especially students. Although there are some negative sentiments that appear around 38.08%. The results of this study can be used as a reference for the MBKM policy development team, especially the Kemendikbud POKJA team, because this program can provide benefits and experiences for students while the results of this research can be used as evaluation material for the team in the future to be even better

Full Text:

PDF

References


. Nugroho, A. “Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naive Bayes Classifier Dengan Ekstrasi Fitur N-Gram”, Jurnal Sains Komputer Dan Informatika, Vol. 2, No. 2, https://doi.org/10.30645/j-sakti.v2i2.83, pp 200, 2021.

. Fuadi, T. M., & Aswita, D. “Merdeka Belajar Kampus Merdeka (Mbkm): Bagaimana Penerapan Dan Kedala Yang Dihadapi Oleh Perguruan Tinggi Swasta Di Aceh”, Jurnal Dedikasi Pendidikan, Vol. 5, No. 2, http://jurnal.abulyatama.ac.id/index.php/dedikasi, pp 603-614, 2021.

. Wandani, A., Fauziah, F., & Andrianingsih, A. “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes”, Jurnal Sains Komputer Dan Informatika, Vol. 5, No. 2, pp 651-665, 2021.

. Prabowo, W. A., & Wiguna, C. “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM”, Jurnal Media Informatika Budidarma, Vol. 5, No. 1, https://doi.org/10.30865/mib.v5i1.2604, pp 149, 2021 .

. Taofik Krisdiyanto, E. M. O. N. “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers”, Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, Vol. 7, No. 1, http://ejournal.uin-suska.ac.id/index.php/coreit/article/view/12945, pp 32-37, 2021.

. Eni Tri Handayani, Ari Sulistiyawati, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan Dengan Metode Klasifikasi Naive Bayes”, Jurnal Teknologi dan Sistem Informasi, Vol. 2, No. 3, http://jim.teknokrat.ac.id/index.php/JTSI, pp 32-37, September 2021.

. Aziz, A., Fauziah, F., & Fitri, I. “Analisis Sentimen Terhadap Kebijakan Pemerintah Tentang Larangan Mudik Hari Raya Idulfitri di Indonesia Tahun 2021 Menggunkan Metode Naïve Bayes”, Jurnal Sains Komputer Dan Informatika,Vol. 5, No. 2, http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/381, pp 842-851, 2021.

. Normawati, D., & Prayogi, S. A. “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter”, Jurnal Sains Komputer & Informatika, Vol. 5, No. 2, pp 697–711, 2021.

. Ahmadi, M. I., Gustian, D., & Sembiring, F. “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes” Jurnal Sains Komputer & Informatika, Vol. 5, No. 2, pp 807–814, 2021.

. Rizki Aulianita, Achmad Rifai, “Optimasi Particle Swarm Optimization Pada Naive Bayes Untuk Sentiment Analysis Furniture”, Information Management For Educators And Professionals, Vol. 3, No. 1, pp 31-40, Desember 2018.

. Utami, D. S., & Erfina, A. “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes Pada dasarnya Indonesia”, Jurnal Sains Komputer & Informatika, Vol. 6, No. 1, pp 418–427, 2022.

. Suwanda Aditya Saputra, Didi Rosiyadi, Windu Gata, Syepry Maulana Husain, “Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization”, Jurnal Resti, Vol. 3, No.3, http://jurnal.iaii.or.id/, pp 377-382, 2021.

. Aziz, A. “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength”. Jurnal Sains Komputer & Informatika, Vol. 6, No. 1, pp 115, 2022.

. Li, Z., Li, R., & Jin, G., “Sentiment Analysis Of Danmaku Videos Based On Naive bayesAnd Sentiment Dictionary”, IEEE Access, 8, https://doi.org/10.1109/ACCESS.2020.2986582, pp 75073–75084, 2020.

. Ernawati, S., Yulia, E. R., Frieyadie, & Samudi, “Implementation of the Naive bayesAlgorithm with Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online Companies”, 6th International Conference on Cyber and IT Service Management, https://doi.org/10.1109/CITSM.2018.8674286, Citsm, 1–5, 2019.

. Retno Sari, Ratih Yulia Hayuningtyas, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website”, Indonesian Journal on Software Engineering, Vol. 5, No. 2, pp 51-60, Desember 2019.

. Ibrahim, M. N., & Yusoff, M. Z., “The Impact of Different Training Data Set on the Accuarcy of Sentiment Classification of Naive Bayes Technique”, IEEE Conference on Open Systems (ICOS), Miri Marriott Resort & SPA, Miri, Sarawak, Malaysia, pp 17-20, November 2021.

. Lisda Widiastuti, “Pemilihan Fitur Pada Analisis Sentimen Review Travel Online Menggunakan Algoritma Naive Bayes Dalam Penerapan Mutual Information Dan Particle Swarm Optimization (PSO)”, Indonesian Journal on Computer and Information Technology, Vol. 3, No.1, pp 91-100, Mei 2018.




DOI: http://dx.doi.org/10.30645/j-sakti.v6i2.502

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats