Analisis Sentimen Pada Twitter @Ovo_Id dengan Metode Support Vectore Machine (SVM)

Hendri Sulastomo(1*), R Ramadiansyah(2), Khalil Gibran(3), Efrian Maryansyah(4), Aththoriqh Tegar(5),

(1) Universitas Nusa Mandiri
(2) Universitas Nusa Mandiri
(3) Universitas Nusa Mandiri
(4) Universitas Nusa Mandiri
(5) Universitas Nusa Mandiri
(*) Corresponding Author

Abstract


Social networking helps internet users communicate. This is because social network users can convey messages by utilizing the facilities prepared by each social media. Social media users' messages can be used in various ways, such as a review of a product or a review of a problem in politics or current social problems. This can be done by analyzing the sentiments of social media users. The support vectore machine method is one method that can be used to analyze sentiment. In sentiment analysis using the support vectore machine method, it is done by classifying sentiment into compliant or not compliant classes. The accuracy rate of sentiment analysis for @Ovo_ID using the support vectore machine method is 94% using 1000 tweet data.

Full Text:

PDF

References


Utomo, M. S, 2013, “Implementasi Stemmer Tala pada Aplikasi Berbasis Web”, Jurnal Teknologi informasi DINAMIK, Volume 18, pp. , 41-45.

Dian Indriani, 2019., “Analisis Sentiment pada tweet dengan tagar #kpujangancurang menggunakan metode Naïve Bayes”, Riau, Universitas Islam Riau.

Idris, N.R.N., Toh, C.L., and Elbuluk, E., “A New Torque and Flux Controller for DTC of Induction Machine”, IEEE Transactions on Industry Application, Vol. 42, No.6, pp. 1358-1366, Nov/Dec 2006.

M. Hosoz and H. M. Ertunc, “Artificial Neural Network Analysis of an Automobile Air Conditioning System” Energy Conv. Man., Vol. 47, pp. 1574-1587, July 2006.

B. Liu, 2012. “Sentiment Analysis and opinion mining”. Morgan & Claypool, Publisher.

Mark Ryan M. Talabis. D. Kaye, 2015. “Supervised learning”, Nugroho, A. S. 2008. “Support Vector Machine, Paradigma baru dalam softcomputing”, Konfrensi Nasional Sistem dan Informatika, 92-99.

Mhd. Furqan, dkk. 2019. “Penerapan Metode Otsu dalam melakukan Segmentasi Citra pada Citra Naskah Arab”, Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, November, ISSN 2476-9843.20(1):59-72.

Retno Tri Wulandari, 2017, “Data Mining”. Yogyakarta: Penerbit Gava Media. Hal 33-34.

Novianto Donna Prayoga, dkk. 2018, “Sistem Diagnosis Penyakir Hati Menggunakan Metode Naïve Bayes”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Agustus, ISSN: 2548-964X, 2666-2671.

Bukhari, Varian Habibie. (2015). “Sentiment Analysis Menggunakan K-Nearest Neighbor dengan perbandingan Fungsi jarak (Studi Kasus : Twitter Indosat dan Telkomsel)”. Bandung : Universitas Widyatama.




DOI: http://dx.doi.org/10.30645/j-sakti.v6i2.514

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats