Klasifikasi Teks Mining Terhadap Analisa Isu Kegiatan Tenaga Lapangan Menggunakan Algoritma K-Nearest Neighbor (KNN)

Nur Ajijah(1*), Adi Kurniawan(2), S Susilawati(3),

(1) Universitas Singaperbangsa Karawang, Indonesia
(2) Universitas Singaperbangsa Karawang, Indonesia
(3) Universitas Singaperbangsa Karawang, Indonesia
(*) Corresponding Author

Abstract


Information and communication technology at this time is developing very rapidly, including in the easier dissemination of information. With the sophisticated technology in conveying information, it is possible that there is information that is not certain of its truth. The issue that occurs is due to the discrepancy of expectations expected by distributors, kiosks, and farmers.  The amount of issue data obtained greatly affects the efficiency of the results that will be obtained. Therefore, it is necessary to have a text analysis  to find out the issues spread in the field regarding the services of products and services provided by PT XYZ. In this study, it applied the CRISP-DM research stages and the application of the K-Nearest Neighbor (KNN) algorithm  which showed that the resulting accuracy rate was 93.88% with data of 2,500 data. And the highest precission value is obtained by the payment qualification of 98.67%.

Full Text:

PDF

References


Alfiani, A. M., Saptono, R., & Anggraningsih, R. (2015, Juni 01). Sistem Klasifikasi Feedback Pelanggan Dan Rekomendasi Solusi Atas Keluhan Di Upt Puskom Uns Dengan Algoritma Naïve Bayes Classifier Dan Cosine Similarity. Jurnal Itsmart, 4(1), 36 - 42.

Darma, D. S., & Saragih, L. (2019, 05). Peranan Sales Promotion Representative Terhadap Volume Penjualan Shinzui Pada Pt. Focus Distribusi Nusantara. Manajemen : Jurnal Ekonomi, 1(1), 1 - 8. Doi:Https://Doi.Org/10.36985/Manajemen.V1i1.76

Deviyanto, A., & Wahyudi, M. R. (2018, Mei). Penerapan Analsis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor (Knn). Jisika (Jurnal Informatika Sunan Kalijaga), 3(1), 1-13.

Gata, W., & Purnomo. (2017). Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbor Pada Data Content Berita Sms. Jurnal Format , 6(1), 1-13.

Nurjanah, W. E., Perdana, R. S., & Fauzi, M. A. (2017, Desember). Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat Media Sosial Twitter Menggunakan Metode K-Nearest Neighbor Dan Pembobotan Jumlah Retweet . Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer , 1(12), 1750-1757.

Putra, M. R., & Nova Wardani, K. R. (2020, Juni). Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial. Jutim (Jurnal Teknik Informatika Musirawas), 05(01), 63-71.

Ruhyana, N., & Rosiyadi, D. (2019). Klasifikasi Komentar Instagram Untuk Identifikasi Keluhan Pelanggan Jasa Pengiriman Barang Dengan Teknik Smote. Faktor Exacta, 12(4), 280 - 290. Doi: 10.30998/Faktorexacta.V12i4.4981

Sukma, A., Zaman, B., & Purwati, E. (2015, Desember). Klasifikasi Temu Kembali Informasi Dengan K-Nearest Neghbour. Record And Library Journal, 1(2), 129-138.

T. Rismawan, “Aplikasi Klasifikasi Jenis Tumbuhan Mangrove Berdasarkan Karakteristik Morfologi Menggunakan Metode K-Nearest Neighbor (Knn) Berbasis Web,” 2016.




DOI: http://dx.doi.org/10.30645/j-sakti.v7i1.589

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats