Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur

Aris Setiyadi(1*), Ema Utami(2), Dhani Ariatmanto(3),

(1) Univeristas Amikom Yogyakarta, Indonesia
(2) Univeristas Amikom Yogyakarta, Indonesia
(3) Univeristas Amikom Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Object detection is a skill that can be taught to a machine with the help of a camera sensor to capture a digital image. By using the YOLO algorithm we can teach machines to detect, for example, humans. Much research in object detection has been carried out previously using different algorithms and methods and also on different objects and images. In this research, a method was carried out to modify the architecture of YOLOv8 in the head section to be used to detect human objects in grayscale images. The training process was carried out 4 times using the default architecture, Model 1, 2 and 3 architecture. With the default model results, the mAP value was 76, Model 1 had an mAP value of 66, model 2 had an mAP value of 81 and model 3 produced an mAP value of 80. From the research carried out modifications The YOLOv8 architecture in the head section can influence the training results and produce a better model than the default architecture which only produces an mAP value of 76. The best results were obtained in model 2 with layers used of 40x40x512xW resulting in a model with an mAP value of up to 81.

Full Text:

PDF

References


Ata Jahangir Moshayedi, Atanu Shuvam Roy, Amin Kolahdooz, Yang Shuxin (2022), “ Deep Learning Application Pros and Cons Over Algorithm”, EAI Endorsed Transactions on AI and Robotics, doi: 10.4108/10.4108/airo.v1i.19.

W. Zhu, H. Zhang, J. Eastwood, X. Qi, J. Jia, and Y. Cao, “Concrete crack detection using lightweight attention feature fusion single shot multibox detector,” Knowl Based Syst, vol. 261, p. 110216, Feb. 2023.

Chien-Yao Wang1 , Alexey Bochkovskiy, and Hong-Yuan Mark Liao1, 2022 “ YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv:2207.02696v1.

Amelia, Dewi, I. A & Rafiqi, F. 2019. Deteksi Manusia Menggunakan Pre-Trained MobileNet untuk Segmentasi Citra Menentukan Bentuk Tubuh. Mindjournal.

Wahyu, Rahmaniar, W & Hernawan, A. 2021,. Real-Time Detection Using Deep Learning on Embedded platform: A Review. Journal of Robotics and Control ( JRC ) Volume 2.

Swastika, W., Nur, A.W., Kelana, O.H., 2019., Monitoring Ruangan Untuk Deteksi Manusia berbasis CNN Dengan Fitur Push Notification., TEKNIKA, Volume 8 Nomer 2.

Kharunnas, Mulyanto, E. & Zaini, A., 2021. Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot., Jurnal Teknik ITS., Volume 10 No. 1.

Kristo, M., Kos, M.I & Pobar, M. 2020. Thermal Object Detection in Difficult Weather Conditions Using Yolo.IEEE.

Kurniawan, E. Adinanta, H. Suryadi. Sirenden, B.H. Ula, R.K. Pratomo, H Purwowbowo & Prakosa, J.A. 2022. Deep Neural Network-based physical distancing Monitoring System with TensorRT Optimization. Internasional Journal Of Advances in Intelligent Informatics ( ijain ). Vol 8 No 2.

M. Musser, 2020 “Detecting Autism Spectrum Disorder in Children With Computer Vision,”. https://towardsdatascience.com.

Harahap, M., Agustinaa, E.S., Lubis, M. M., Apriadi, & Anggar, A., 2020. Deteksi Objek Manusia Pada Image Dengan Metode Thinning Berdasarkan Local Maxima., Jatisi Vol7 No 3.

Arfan, M. Nurjalal, A., Somantri, M & Sudjadi., 2021. Pengenalan aktivitas Manusia pada Area Tambak Udang dengan Convolutional Neural Network. Jurnal RESTI, Vol5 no 1.

Sumit, S.S. Rambli, D.R.A., Mirjalili, S., Ejaz, M.M. & Miah, M.S.U. 2022. ReStinet: Improving the Perfomance of Tiny-YOLO-Based CNN Architecture for Applications in Human Detection. MDPI.

Muannif Ridwan, Suhar AM, Bahrul Ulum dan Fauzi Muhammad, 2021, “ The Importance Of Application Of Literature Review In Scientific Research” jurnal masoho vol 2.

Rangga Gelar Guntara, 2023 , “ Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep LearningYOLOv7” Jtkis vol 5 no 1.




DOI: http://dx.doi.org/10.30645/j-sakti.v7i2.694

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats