Eksplorasi Deep Learning Menghasilkan Karya Musik Menggunakan Metode Generative Adversarial Networks (GANS) (Kasus Musik Genre Pop)

Noviyanti. P(1*), Y Yuliana(2), Listra Firgia(3), Veneranda Rini Hapsari(4),

(1) Institut Shanti Bhuana, Bengkayang, Indonesia
(2) Institut Shanti Bhuana, Bengkayang, Indonesia
(3) Institut Shanti Bhuana, Bengkayang, Indonesia
(4) Institut Shanti Bhuana, Bengkayang, Indonesia
(*) Corresponding Author


Music artistry is an enduring form of artistic expression that continues to evolve across various genres. Among these genres, pop music stands out as particularly popular. Creating musical compositions is a challenging endeavor, requiring a profound understanding of musical notation, a skill possessed by select individuals, such as musicians. Even for musicians, a wealth of references is necessary to produce fresh compositions that can be appreciated by a wide audience. This study aims to explore the creation of new pop genre music using Generative Adversarial Networks (GANs). GANs, a widely adopted method, demonstrate the capability to generate novel works by leveraging two distinct components: the Generator and the Discriminator. These models engage in a competitive interplay, with the Generator striving to produce synthetic datasets that closely resemble authentic ones, while the Discriminator endeavors to discern between datasets generated by the Generator and genuine ones. Based on the conducted research, it is evident that GANs have the capacity to generate a diverse range of new music based on acoustic piano instrument notations, employing a dataset of 50 music files in .mid format.

Full Text:



A. Gupta, “Introduction to deep learning: Part 1,” Chem. Eng. Prog., vol. 114, no. 6, pp. 22–29, 2018.

H. Yaya and T. Wahyono, Dasar-Dasar Deep Learning dan Implementasinya. Bandung: Gava Media, 2021.

Sayidiman and I. Andi, Seni Musik. Jakarta: PT Grafindo Media Pratama, 2010.

E. S. Purba, T. Informatika, F. T. Informasi, U. Kristen, and S. Wacana, “Implementation of Generative Adversarial Networks for Penerapan Generative Adversarial Networks Dalam Pembuatan,” vol. 3, no. 3, pp. 707–715, 2022.

C. Nurdenara and W. Fawwaz, “Translasi Citra Antara Manusia Dan Wayang Orang Menggunakan Generative Adversarial Network,” eProceedings …, vol. 8, no. 5, pp. 11307–11319, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15617.

V. V. Pramansah, D. I. Mulyana, T. Silfia, and R. T. Jaya, “Penciptaan Karakter Anime Otomatis Dengan Menggunakan Generative Adversarial Networks,” J. Tek. Elektro dan Komputasi, vol. 4, no. 1, pp. 21–29, 2022.

T. Suprapti, D. A. Kurnia, D. Anggara, R. D. Rian, and A. Setiawan, “Implementasi Model Algoritma Generative Adversarial Network (Gan) Pada Sistem Presensi Berbasis Deteksi Wajah (SIDEWA),” Temat. J. Teknol. Inf. Komun., vol. 9, no. 2, pp. 231–236, 2023, doi: 10.38204/tematik.v9i2.1048.

P. Y. Santosa, E. Rachmawati, T. Agung, and B. Wirayuda, “Translasi Citra Malam Menjadi Siang Menggunakan Deep Convolutional Generative Adverserial Network,” eProceedings Eng., vol. 8, no. 1, 2021.

J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts, “GANSynth: Avdersarial Neural Audio Synthesis,” pp. 1–17, 2019.

J. Min, Z. Liu, L. Wang, D. Li, M. Zhang, and Y. Huang, “Music Generation System for Adversarial Training Based on Deep Learning,” Processes, vol. 10, no. 12, 2022, doi: 10.3390/pr10122515.

DOI: http://dx.doi.org/10.30645/j-sakti.v7i2.705


  • There are currently no refbacks.

J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan :

View My Stats