Implementasi Algoritma Beale-Powell Restarts untuk Prediksi Perkembangan Ekspor Migas-NonMigas di Indonesia

Achmad Daengs GS(1*), Mhd. Dicky Syahputra Lubis(2), M Mahjudin(3),

(1) Universitas 45 Surabaya, Surabaya, Indonesia
(2) Universitas Tjut Nyak Dien, Medan, Indonesia
(3) Universitas Muhammadyah Gresik, Gresik, Indonesia
(*) Corresponding Author

Abstract


This research aims to implement the Beale-Powell Restarts algorithm in predicting the development of oil and non-oil exports in Indonesia. With the increasing importance of international trade for the economic growth of a country, accurate understanding of export trends becomes crucial for decision-making at the policy level. The data used in this study originates from the value of oil and non-oil exports (in Million US$) in Indonesia obtained from the customs documents of the Directorate General of Customs and Excise (PEB and PIB). The implementation method of the Beale-Powell Restarts algorithm is focused on analyzing and forecasting export development trends. This algorithm is known for its ability to address convergence issues commonly encountered in nonlinear optimization. By applying this algorithm, the research aims to improve the accuracy and precision of predictions, providing valuable insights for economic planning and trade strategy development in Indonesia. The study also includes a comparison of the performance of several different models in prediction, with various models such as 8-5-1, 8-10-1, 8-15-1, 8-20-1, and 8-25-1 being evaluated. The research findings indicate that the best model is 8-5-1, which has the lowest testing Mean Squared Error (MSE) value of 0.00735820154, affirming that the use of the Beale-Powell Restarts algorithm yields better results in predicting the development of oil and non-oil exports in Indonesia compared to other models. It is hoped that the implementation of the Beale-Powell Restarts algorithm will make a significant contribution in assisting stakeholders in formulating more effective and sustainable trade policies to advance the Indonesian economy.

Full Text:

PDF

References


M. A. Witt, A. Y. Lewin, P. P. Li, and A. Gaur, ‘Decoupling in international business: Evidence, drivers, impact, and implications for IB research’, Journal of World Business, vol. 58, no. 1, p. 101399, 2023, doi: 10.1016/j.jwb.2022.101399.

Y. Liu, J. Zhu, C. P. Tuwor, C. Ling, L. Yu, and K. Yin, ‘The impact of the COVID-19 pandemic on global trade-embodied carbon emissions’, Journal of Cleaner Production, vol. 408, no. March, p. 137042, 2023, doi: 10.1016/j.jclepro.2023.137042.

H. Nguyen, A. V. Pham, M. D. (Marty) Pham, and M. H. Pham, ‘Business resilience: Lessons from government responses to the global COVID-19 crisis’, International Business Review, vol. 32, no. 5, p. 102166, 2023, doi: 10.1016/j.ibusrev.2023.102166.

F. Redjeki, ‘Perdagangan Internasional Vaksin Dalam Pertumbuhan Ekonomi Negara’, JISIP (Jurnal Ilmu Sosial dan Pendidikan), vol. 7, no. 1, pp. 507–512, 2023, doi: 10.58258/jisip.v7i1.4399.

G. C. Ananda and H. Helman, ‘Pengaruh Perdagangan Internasional Terhadap Pertumbuhan Ekonomi’, Jurnal All Fields of Science J-LAS, vol. 3, no. 4, pp. 66–74, 2023, doi: 10.58939/afosj-las.v3i4.690.

D. Wistiasari, F. Zhangrinto, Hendro, Katherine, Nancy, and Steven, ‘Analisis Pengaruh Perdagangan Internasional Terhadap Pertumbuhan Ekonomi Indonesia’, Public Service And Governance Journal, vol. 4, no. 2, pp. 37–43, 2023, doi: 10.56444/psgj.v4i2.716.

A. Subandi, Kasem, I. R. Akma, and F. Raya, ‘Pengaruh Perdagangan Internasional Terhadap Pertumbuhan Ekonomi Indonesia Periode 2020-2023’, Jurnal Ekonomi Manajemen Dan Bisnis, vol. 1, no. 2, pp. 80–84, 2023, [Online]. Available: http://jurnalistiqomah.org/index.php/jemb/article/view/179

M. Zuhriadi, M. Zuhriadi, R. Manurung, R. Y. Lumbangaol, and B. Purba, ‘Pengaruh Ekonomi Politik Terhadap Perdagangan Internasional dan Pembangunan Ekonomi’, MUQADDIMAH: Jurna Ekonomi, Manajemen, Akuntansi dan Bisnis, vol. 2, no. 1, pp. 250–256, 2024, doi: 10.59246/muqaddimah.v2i1.600.

N. Fuadah and E. Setyowati, ‘Analisis Pengaruh Inflasi, Pertumbuhan Ekonomi, dan Kurs terhadap Volume Ekspor Batubara Indonesia Tahun 1992-2022’, JIIP - Jurnal Ilmiah Ilmu Pendidikan, vol. 7, no. 2, pp. 1166–1173, 2024, doi: 10.54371/jiip.v7i2.3830.

M. Hemmat Esfe, S. Esfandeh, and D. Toghraie, ‘Investigation of different training function efficiency in modeling thermal conductivity of TiO2/Water nanofluid using artificial neural network’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 653, no. July, p. 129811, 2022, doi: 10.1016/j.colsurfa.2022.129811.

M. Wahyudi and L. Pujiastuti, ‘JURNAL RESTI Application of Neural Network Variations for Determining the Best’, JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 5, pp. 742–748, 2022, doi: 10.29207/resti.v6i5.4356.

Y. Jusman, M. A. Nur’Aini, and S. Puspita, ‘Classification of Dental Caries Level Using Conjugate Gradient Backpropagation Models’, in 2023 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 2023, Semarang: IEEE, 2023, pp. 204–208. doi: 10.1109/iSemantic59612.2023.10295351.

H. Benbouhenni, L. Ionescu, A.-G. Mazare, D. Zellouma, I. Colak, and N. Bizon, ‘Active and reactive power vector control using neural-synergetic-super twisting controllers of induction generators for variable-speed contra-rotating wind turbine systems’, Measurement and Control, pp. 1–30, 2024, doi: 10.1177/00202940231224386.

S. R. Dani, S. Solikhun, and D. Priyanto, ‘The Performance Machine Learning Powel-Beale for Predicting Rubber Plant Production in Sumatera’, International Journal of Engineering and Computer Science Applications (IJECSA), vol. 2, no. 1, pp. 29–38, 2023, doi: 10.30812/ijecsa.v2i1.2420.

R. N. Singarimbun, O. E. Putra, N. L. W. S. R. Ginantra, and M. P. Dewi, ‘Backpropagation Artificial Neural Network Enhancement using Beale-Powell Approach Technique’, Journal of Physics: Conference Series, vol. 2394, no. 1, p. 012007, 2022, doi: 10.1088/1742-6596/2394/1/012007.

H. Zhu, ‘Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors’, Sustainability (Switzerland), vol. 15, no. 18, p. 13592, 2023, doi: 10.3390/su151813592.

Bustami, A. M. Yolanda, and N. Thahira, ‘Forecasting Non-Oil and Gas Exports in Indonesia Using Double and Triple Exponential Smoothing Methods’, International Journal of Industrial Engineering and Engineering Management, vol. 5, no. 1, pp. 45–49, 2023, doi: 10.24002/ijieem.v5i1.6211.

A. S. Ahmar, A. Rahman, P. V. Anatolievich, R. Rusli, and S. M. Meliyana R., ‘Forecasting the Export Value of Oil and Gas in Indonesia using Autoregressive Integrated Moving Average (ARIMA)’, Quantitative Economics and Management Studies, vol. 4, no. 5, pp. 1036–1044, 2023, doi: 10.35877/454ri.daengku1040.

E. S. Ompusunggu, W. Sinaga, M. Siahaan, and J. Winata, ‘Implementation of Data Mining To Predict the Value of Indonesian Oil and Non-Oil and Gas Import Exports Using the Linear Regression Method’, Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 7, no. 1, pp. 168–176, 2023, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4081.

A. Wanto, ‘Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts’, Jurnal Teknologi dan Sistem Informasi, vol. 03, no. 03, pp. 370–380, 2018, doi: 10.25077/ TEKNOSI.v3i3.2017.370-380.

Y. Andriani, H. Silitonga, and A. Wanto, ‘Analisis jaringan syaraf tiruan untuk prediksi volume ekspor dan impor migas di Indonesia’, Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018, doi: 10.26594/register.v4i1.1157.

A. Wanto et al., ‘Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN’, Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012016, 2019, doi: 10.1088/1742-6596/1255/1/012016.

N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, ‘Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm’, IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022, doi: 10.30645/ijistech.v5i5.186.

G. R. Junaidi, Y. Septian, A. Wanto, A. P. Windarto, and D. Hartama, ‘Analisis Performance Algoritma Powell-Beale untuk Prediksi Impor Alumunium’, Seminar Nasional Ilmu Sosial dan Teknologi - SANISTEK, vol. 1, no. 1, pp. 290–298, 2021, [Online]. Available: https://www.prosiding.politeknikcendana.ac.id/index.php/sanistek/article/view/79

A. S. Ahmara, A. Rahman, S. M. M. R, R. Ruslib, Nachnoer Arssc, and A. K. Panday, ‘Implementation of Exponential Smoothing in Forecasting the Export Value Price of Oil and Gas in Indonesia’, Quantitative Economics and Management Studies (QEMS), vol. 4, no. 4, pp. 812–819 (Yulisa, 2023, doi: 10.35877/454RI.qems1022.

C. F. F. Purwoko, S. Sediono, T. Saifudin, and M. F. F. Mardianto, ‘Prediksi Harga Ekspor Non Migas di Indonesia Berdasarkan Metode Estimator Deret Fourier dan Support Vector Regression’, Inferensi, vol. 6, no. 1, pp. 45–55, 2023, doi: 10.12962/j27213862.v6i1.15558.

A. S. Ahmar, M. Botto-Tobar, A. Rahman, and R. Hidayat, ‘Forecasting the Value of Oil and Gas Exports in Indonesia using ARIMA Box-Jenkins’, Mathline : Jurnal Matematika Dan Pendidikan Matematika, vol. 3, no. 1, pp. 35–42, 2022, doi: 10.35877/454ri.jinav260.

B. P. S. Indonesia, ‘Nilai Ekspor Migas-NonMigas (Juta US$), 2023’, Badan Pusat Statistik Indonesia, 2024. https://www.bps.go.id/id/statistics-table/2/MTc1MyMy/nilai-ekspor-migas-nonmigas.html (accessed Mar. 01, 2024).

P. Parulian et al., ‘Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters’, Journal of Physics: Conference Series, vol. 1255, no. 012033, pp. 1–6, 2019, doi: 10.1088/1742-6596/1255/1/012033.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, ‘Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera’, vol. 1, no. 4, pp. 126–134, 2022.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, ‘Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth’, Journal of Physics: Conference Series, vol. 1255, no. 012023, pp. 1–6, 2019, doi: 10.1088/1742-6596/1255/1/012023.

R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, ‘Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama’, Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022, doi: 10.47065/jimat.v2i3.170.

Y. Andriani, H. Silitonga, and A. Wanto, ‘Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia’, Register - Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, ‘Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning’, KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

W. Saputra, J. T. Hardinata, and A. Wanto, ‘Resilient method in determining the best architectural model for predicting open unemployment in Indonesia’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.

I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018, doi: 10.26877/jiu.v4i2.2423.

A. Wanto and J. T. Hardinata, ‘Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012114, Jan. 2020, doi: 10.1088/1757-899X/725/1/012114.

I. S. Purba et al., ‘Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia’, Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012014, 2019, doi: 10.1088/1742-6596/1255/1/012014.

S. Setti and A. Wanto, ‘Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World’, JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018, doi: 10.15575/join.v3i2.205.

S. Aisyah, Z. Zulkifli, and P. A. Cakranegara, ‘Penerapan Algoritma Bayesian Regulation untuk Estimasi Posisi Cadangan Devisa Indonesia’, Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 205–211, 2022, doi: 10.47065/josyc.v3i4.2170.

Safruddin, E. Efendi, R. M. Ch, and A. Wanto, ‘Pemanfaatan Algoritma BFGS Quasi-Newton untuk Melihat Potensi Perkembangan Luas Tanaman Kopi di Pulau Sumatera’, Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 473–483, 2023, doi: 10.30865/mib.v7i1.5524.




DOI: http://dx.doi.org/10.30645/j-sakti.v8i1.786

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats