Implementasi Algoritma K-Medoids untuk Pengelompokkan Sebaran Mahasiswa Baru

Eka Irawan(1*), Sandy Putra Siregar(2), Irfan Sudahri Damanik(3), Ilham Syaputra Saragih(4),

(1) Program Studi Sistem Informasi, STIKOM Tunas Bangsa
(2) STIKOM Tunas Bangsa
(3) Program Studi Sistem Informasi, STIKOM Tunas Bangsa
(4) Program Studi Sistem Informasi, STIKOM Tunas Bangsa
(*) Corresponding Author

Abstract


The existence of new students at a tertiary institution is a routine activity every year in a tertiary institution and can also see the sustainability of the tertiary institution. The variety of regional origin of new students makes the party from the university want to see the distribution of new students based on the origin of the school and its place of residence. STIKOM Tunas Bangsa is one of the tertiary institutions in Pematangsiantar. It aims to promote the university. K-Medoids is able to group data on the distribution of new students in STIKOM Tunas Bangsa Pematangsiantar. The clusters produced in this study are of three clusters. The validity used in this study is the validity of Silhoutte Coefficient. The validity value generated in the K-Medoids algorithm produces a validity value of -116.47 by assuming that if the non-medoids value produced S <0 then the cluster process is stopped.

Full Text:

PDF

References


Sudirman, A. P. Windarto, and A. Wanto, “Data mining tools | rapidminer: K-means methodon clustering of rice crops by province as efforts to stabilize food crops in Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018, doi: 10.1088/1757899X/420/1/012089.

Abdillah, G., Putra, F. A., & Renaldi, F. (2016). Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means. Seminar Nasional Teknologi Informasi Dan Komunikasi, 2016(Data Mining), 18–19.

Johan Oscar Ong, "Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing President University," Jurnal Ilmiah Teknik Industri, vol. 12, no. 1, pp. 10-13, Juni 2013.

Ogor. (2007). Student Academic Performance Monitoring and Evaluation Using Data Mining Techniques.

Sandy Putra Siregar, and A. Wanto. “Analysis Accuracy of Artificial Neural Network Using Backpropagation Algorithm In Predicting Process (Forecasting)” International Journal Of Information System & Technology Vol. 1, No. 1, (2017) , pp. 34-42




DOI: http://dx.doi.org/10.30645/jurasik.v5i2.213

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v5i2.213.g195

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats