Analisis Pengelompokan Data Pelelangan Barang Dengan Metode K-Means Clustering

Muhammad Reza Fahlevi(1*), Dini Ridha Dwiki Putri(2), Elvin Syahrin(3),

(1) Universitas Potensi Utama, Indonesia
(2) Universitas Potensi Utama, Indonesia
(3) Universitas Potensi Utama, Indonesia
(*) Corresponding Author

Abstract


Auction data is very important data for companies that are particularly engaged in credit distribution services. In this company, there is also an auction activity in which goods that have been pawned but have expired credit payments, the goods will be auctioned in general by the company. A large amount of existing customer auction data causes employees to experience several problems in managing large amounts of data and it is difficult to obtain accurate information in grouping auction data according to the amount of money borrowed. This application can help employees to obtain information in the method of grouping auction data by applying K-Means Clustering and can be better selected based on predetermined criteria. Testing the application for grouping the K-Means Clustering method using RapidMiner gave results based on 17 customer data types of  Small loans, 5 Medium loan types, and 2 customer data on Large loan types.

Full Text:

PDF

References


Fahlevi, M. R., Putri, D. R. D., Putri, F. A., Rahman, M., Sipahutar, L., & Muhatri, M. (2020, October). Determination of Rice Quality Using the K-Means Clustering Method. In 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS) (pp. 1-6). IEEE.

Rosmini, Fadlil, A., Sunardi (2018). “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah” , IT Journal Research and Development Vol.3, No.1, Agustus 2018.

Rizki, M. Y., Fania, F., & Windarto, A. P. (2020). Implementasi K-Means Clustering Dalam Mengelompokkan Jumlah Penjualan Ikan Laut Di Tpi Menurut Wilayah. JIKO (Jurnal Informatika dan Komputer), 3(2), 69-74.

Zeilani, M. S. (2022). Implementasi Algoritma K-Medoids Dalam Mengklasifikasi Barang Layak Lelang. BEES: Bulletin of Electrical and Electronics Engineering, 2(3), 106-111.

V. Miralda, M. Zarlis, and E. Irawan, (2020). “Penerapan Metode K-Means Clustering Untuk Daging Ayam Buras,” Build.Informatics, Technol. Sci., vol. 2, no. 2, pp. 91–98, 2020.

Z. Mustofa and I. S. Suasana, (2018). “Algoritma Clustering K-Medoids pada E-Goverment Bidang Information and Communication Technologi Dalam Penentuan Status Edgi,” J. Teknol. Inf. dan Komun., vol. 9, no. 1, pp. 1–10, 2018.

E. Buulolo, Data Mining Untuk Perguruan Tinggi, 1st ed. Yogyakarta: Deepublish, 2020.

J. O. Ong., 2013., “Implementasi Algotritma Kmeans clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20.

Fahlevi, M. R., & Putri, D. R. D. (2020). Aplikasi Penerapan TOPSIS Dalam Menentukan Kualitas Bibit Jambu Madu. J-SAKTI (Jurnal Sains Komputer dan Informatika), 4(2), 569-580.

Putri, D. R. D., Fahlevi, M. R., Utami, R., Nasution, F. P., Doni, R., & Sipahutar, L. (2021, September). Identification of Dysmorphic Body Disorders Using the Bayes Theorem Method. In 2021 9th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-4). IEEE.




DOI: http://dx.doi.org/10.30645/jurasik.v8i1.541

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i1.541.g519

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats