Klasifikasi Penyakit Skizofrenia menggunakan Algoritma Logistic Regresion

Khoirun Nisa(1*), Sony Kartika Wibisono(2),

(1) Universitas Harapan Bangsa, Purwokerto, Indonesia
(2) Universitas Harapan Bangsa, Purwokerto, Indonesia
(*) Corresponding Author

Abstract


The World Health Organization (WHO) reports that 20 million people worldwide are affected by this mental disorder. Therefore, it is necessary to develop an automated model to diagnose patients that can help doctors to start medical treatment early. This research aims to compare machine learning algorithms in the classification of schizophrenia, a mental condition that is often difficult to diagnose, this research is expected to help improve accuracy in the schizophrenia diagnosis process. The research approach involves applying a Logistic Regression model trained with medical and psychological data from schizophrenia patients. The developed model was then tested to evaluate its accuracy in detecting schizophrenia. The accuracy result obtained using the Logistic Regression model was 93.6%.

Full Text:

PDF

References


F. Hassan, S. F. Hussain, and S. M. Qaisar, “Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques,” Inf. Fusion, vol. 92, no. December 2022, pp. 466–478, 2023, doi: 10.1016/j.inffus.2022.12.019.

T. S. Kumar, K. N. V. P. S. Rajesh, S. Maheswari, V. Kanhangad, and U. R. Acharya, “Automated Schizophrenia detection using local descriptors with EEG signals,” Eng. Appl. Artif. Intell., vol. 117, no. April 2022, p. 105602, 2023, doi: 10.1016/j.engappai.2022.105602.

S. Bagherzadeh, M. S. Shahabi, and A. Shalbaf, “Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal,” Comput. Biol. Med., vol. 146, no. April, p. 105570, 2022, doi: 10.1016/j.compbiomed.2022.105570.

S. Siuly, Y. Guo, O. F. Alcin, Y. Li, P. Wen, and H. Wang, “Exploring deep residual network based features for automatic schizophrenia detection from EEG,” Phys. Eng. Sci. Med., 2023, doi: 10.1007/s13246-023-01225-8.

M. Agarwal and A. Singhal, “Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals,” Med. Eng. Phys., vol. 112, no. December 2022, 2023, doi: 10.1016/j.medengphy.2023.103949.

S. K. Khare and V. Bajaj, “A hybrid decision support system for automatic detection of Schizophrenia using EEG signals,” Comput. Biol. Med., vol. 141, no. May 2021, p. 105028, 2022, doi: 10.1016/j.compbiomed.2021.105028.

A. I. Korda, E. Ventouras, P. Asvestas, M. Toumaian, G. K. Matsopoulos, and N. Smyrnis, “Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia,” Clin. Neurophysiol., vol. 139, pp. 90–105, 2022, doi: 10.1016/j.clinph.2022.04.010.

A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi, “Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals,” Phys. Eng. Sci. Med., vol. 43, no. 4, pp. 1229–1239, 2020, doi: 10.1007/s13246-020-00925-9.

B. Li, J. Wang, Z. Guo, and Y. Li, “Automatic detection of schizophrenia based on spatial – temporal feature mapping and LeViT with EEG signals,” Expert Syst. Appl., vol. 224, no. April 2022, 2023.

P. K. Sahu, “Artificial intelligence system for verification of schizophrenia via theta-EEG rhythm,” Biomed. Signal Process. Control, vol. 81, no. December 2022, p. 104485, 2023, doi: 10.1016/j.bspc.2022.104485.

V. J. ; S. L. O. V. R. E. J. C. K. H. C. N. A. U. R. Acharya;, “Automated detection of schizophrenia using nonlinear signal processing methods,” Artif Intell Med, vol. 20, 2019, doi: doi: 10.1016/j.artmed.2019.07.006.

S. Mian Qaisar and S. Fawad Hussain, “Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare,” Sensors (Basel)., vol. 20, no. 8, 2020, doi: 10.3390/s20082252.




DOI: http://dx.doi.org/10.30645/jurasik.v8i2.651

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i2.651.g624

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats