Klasifikasi Penyakit Skizofrenia menggunakan Algoritma Logistic Regresion
(1) Universitas Harapan Bangsa, Purwokerto, Indonesia
(2) Universitas Harapan Bangsa, Purwokerto, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
F. Hassan, S. F. Hussain, and S. M. Qaisar, “Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques,” Inf. Fusion, vol. 92, no. December 2022, pp. 466–478, 2023, doi: 10.1016/j.inffus.2022.12.019.
T. S. Kumar, K. N. V. P. S. Rajesh, S. Maheswari, V. Kanhangad, and U. R. Acharya, “Automated Schizophrenia detection using local descriptors with EEG signals,” Eng. Appl. Artif. Intell., vol. 117, no. April 2022, p. 105602, 2023, doi: 10.1016/j.engappai.2022.105602.
S. Bagherzadeh, M. S. Shahabi, and A. Shalbaf, “Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal,” Comput. Biol. Med., vol. 146, no. April, p. 105570, 2022, doi: 10.1016/j.compbiomed.2022.105570.
S. Siuly, Y. Guo, O. F. Alcin, Y. Li, P. Wen, and H. Wang, “Exploring deep residual network based features for automatic schizophrenia detection from EEG,” Phys. Eng. Sci. Med., 2023, doi: 10.1007/s13246-023-01225-8.
M. Agarwal and A. Singhal, “Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals,” Med. Eng. Phys., vol. 112, no. December 2022, 2023, doi: 10.1016/j.medengphy.2023.103949.
S. K. Khare and V. Bajaj, “A hybrid decision support system for automatic detection of Schizophrenia using EEG signals,” Comput. Biol. Med., vol. 141, no. May 2021, p. 105028, 2022, doi: 10.1016/j.compbiomed.2021.105028.
A. I. Korda, E. Ventouras, P. Asvestas, M. Toumaian, G. K. Matsopoulos, and N. Smyrnis, “Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia,” Clin. Neurophysiol., vol. 139, pp. 90–105, 2022, doi: 10.1016/j.clinph.2022.04.010.
A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi, “Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals,” Phys. Eng. Sci. Med., vol. 43, no. 4, pp. 1229–1239, 2020, doi: 10.1007/s13246-020-00925-9.
B. Li, J. Wang, Z. Guo, and Y. Li, “Automatic detection of schizophrenia based on spatial – temporal feature mapping and LeViT with EEG signals,” Expert Syst. Appl., vol. 224, no. April 2022, 2023.
P. K. Sahu, “Artificial intelligence system for verification of schizophrenia via theta-EEG rhythm,” Biomed. Signal Process. Control, vol. 81, no. December 2022, p. 104485, 2023, doi: 10.1016/j.bspc.2022.104485.
V. J. ; S. L. O. V. R. E. J. C. K. H. C. N. A. U. R. Acharya;, “Automated detection of schizophrenia using nonlinear signal processing methods,” Artif Intell Med, vol. 20, 2019, doi: doi: 10.1016/j.artmed.2019.07.006.
S. Mian Qaisar and S. Fawad Hussain, “Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare,” Sensors (Basel)., vol. 20, no. 8, 2020, doi: 10.3390/s20082252.
DOI: http://dx.doi.org/10.30645/jurasik.v8i2.651
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i2.651.g624
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: