Implementasi Algoritma Convolutional Neural Network Untuk Pengenalan Ekspresi Wajah
(1) Universitas Islam Balitar, Indonesia
(2) Universitas Islam Balitar, Indonesia
(3) Universitas Islam Balitar, Indonesia
(*) Corresponding Author
Abstract
Recognizing human facial expressions has broad benefits in various fields. For example, in the field of psychology, by analyzing a person's facial expressions during the counseling process, a psychologist can understand a patient's emotional changes and identify psychological problems. One of the popular algorithms for facial expression recognition is the Convolutional Neural Network (CNN). In this study, an architectural model of the Convolutional Neural Network (CNN) is used which consists of three convolution layers. The test results show that the model drilled with ADAM optimization, batch size 32, and data augmentation achieved good accuracy, namely 70.16% for training data and 64.43% for data validation at the 100th epoch. This study also conducted tests using facial expression images from self-made datasets and achieved the highest accuracy of 67% after training the model up to the 100th epoch. The program we created succeeded in recognizing facial expressions well in real-time situations in 20 participants of various ages. However, this study shows several improvements that can be made, such as increasing the quality and quantity of facial expression data and developing the CNN model with additional features to improve accuracy and overcome overfitting.
Full Text:
PDFReferences
Alexander, L. W., Sentinuwo, S. R., & Sambul, A. M. (2017). Implementasi Algoritma Pengenalan WajahUntuk Mendeteksi Visual Hacking. E-Journal Teknik Informatika, 2301-8364.
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. USA.
Amynarto, N., Sari, Y. A., & Wihandika, R. C. (2018). Pengenalan Emosi Berdasarkan Ekspresi Mikro Menggunakan Metode Local Binary Pattern. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komput, 3230--3238.
Azizi, F. N. (2021). Deteksi Emosi Menggunakan Citra. Tugas Akhir. Universitas Islam Indonesia.
Ellen, L. (2020). Sistem Pendeteksi Engagement Siswa Dalam Lingkungan E-Learning Dengan Teknologi Opencv Berbasis Cnn. Jurnal Teknik Universitas Indonesia.
Farokhah, L. (2020). mplementasi Convolutional Neural Networkuntuk KlasifikasiVariasi Intensitas Emosi pada Dynamic Image Sequence. JURNAL RESTI(Rekayas a Sistem dan T eknol ogi Informasi ), 1070 –1076.
Fujiwara, T., Mizuki, R., Miki, T., & Chemtob, C. (2015). Association between facial expression and PTSD symptoms among young children exposed to the Great East Japan Earthquake: A pilot study. Frontiers in Psychology.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive Computation and Machine Learning Series). London: The MIT Press.
Kusdiananggalih, P. P., Rachmawati, E., & Risnandar. (2021). Pengenalan Ekspresi Wajah Dari Cross Dataset Menggunakan Convolutional Neural. e-Proceeding of Engineering, 3429.
Kusumawati, T. I. (2016). Komunikasi Verbal Dan Nonverbal. Jurnal Pendidikan dan Konseling, 83-98.
Lu, J., & Wan, X. (2022). Affective computing model for natural interaction based on large-scale self-built dataset. SN Applied Sciences.
Mahmud, K. H., Adiwijaya, & Al Faraby, S. (2019). Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network. e-Proceeding of Engineering, 2127.
Matsumoto, D., & Juang, L. (2008). Culture and Psychology. USA: Thomson Wadsworth.
Mehendale, N. (2020). Facial emotion recognition using Convolutional Neural Networks. USA: Springer Nature Switzerland AG.
Mellouk, W., & Handouzi, W. (2020). Facial emotion recognition using deep learning: review and insights. Procedia Computer Science 175, 689–694.
Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural. JURNAL ALGOR, 12-21.
Oliver, M. M., & Alcove, E. A. (2020). UIBVFED: Virtual facial expression
dataset. Plos One, 1-10.
Planalp, S. (2015). How Important Is Emotion in Everyday Interaction? Communicating. 9–38.
Prawitasari, J. E. (1998). Apakah Gerak Tangan dan Tubuh Selaras Dengan Ungkapan Emosi Yang Terlihat Di Wajah? Jurnal Psikologi, 10-21.
Risawandi, Olivia, K., & Afrillia, Y. (2022). Sistem Pendeteksian Dan Pengenalan. Jurnal Teknologi Terapan & Sains.
Rosebrock, A. (2017). Deep Learning for Computer Vision with. USA: PYIMAGESEARCH.
Rusilawati, F., Kinasih, H. W., & Gasim. (2017). Perbandingan Tingkat Akurasi Bentuk Frame Menggunakan Template Matching Pada Pengenalan Wajah. Jurnal Informatika Global, Volume 8 No.2.
Sang, D. V., Dat, N. V., & Thuan, D. P. (2017). Facial Expression Recognition Using Deep. nternational Conference on Knowledge and Systems Engineering (KSE).
Seandrio, A. L., Pratomo, A. H., & Florestiyanto, M. Y. (2021). Implementasi Convolutional Neural Network (CNN) Pada Pengenalan Ekspresi Wajah. Jurnal Informatika dan Teknologi Informasi, 211-221.
Yildirim, S., Chimeumanu, M. S., & Rana, Z. A. (2023). The influence of micro-expressions on deception detection. Multimedia Tools and Applications.
Yusuf, A., Wihandika, R. C., & Dewi, C. (2019). Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 10595-10604.
DOI: http://dx.doi.org/10.30645/jurasik.v8i2.656
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i2.656.g631
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: