Klusterisasi Impor Beras Di Indonesia Menurut Negara Asal Utama Menggunakan Algoritma K-Medoids

Nur Arminarahmah(1*), Achmad Daengs GS(2), Jaya Tata Hardinata(3),

(1) Universitas Islam Kalimantan Muhammad Arsyad Al Banjari, Indonesia
(2) Universitas 45 Surabaya, Surabaya, Indonesia
(3) Universitas HKBP Nommensen Pematangsiantar, Indonesia
(*) Corresponding Author


This study aims to classify rice import data in Indonesia based on the main country of origin using the K-Medoids algorithm. The rice import data used in this study covers the last six years (2017-2022), which is quantitative data, namely rice import data in Indonesia quoted from the Indonesian Statistical Publication, and processed based on the customs archives of the Directorate General of Customs and Excise. The K-Medoids method was chosen because of its ability to handle outliers and provide more stable clustering results compared to other clustering algorithms. The results of the analysis show that there are three main clusters of rice-supplying countries in Indonesia. The first cluster consists of countries with high import volumes, the second includes countries with moderate import volumes, and the third comprises countries with low import volumes. These findings provide important insights for the government and industry players in formulating rice import strategies, particularly in choosing the country of origin of imports and determining tariff policies. In addition, the results of this clustering can be used as a basis for making decisions regarding the diversification of rice import sources to increase national food security.

Full Text:



R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1933/1/012067.

T. Imandasari, M. G. Sadewo, A. P. Windarto, A. Wanto, H. O. Lingga Wijaya, and R. Kurniawan, “Analysis of the Selection Factor of Online Transportation in the VIKOR Method in Pematangsiantar City,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012008, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012008.

M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, “Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP),” Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.

P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, “The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019, p. 012010. doi: 10.1088/1742-6596/1255/1/012010.

S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, “Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals,” Journal of Physics: Conference Series, vol. 1255, no. 012004, pp. 1–7, 2019, doi: 10.1088/1742-6596/1255/1/012004.

A. Wanto et al., “Epoch Analysis and Accuracy 3 ANN Algorithm using Consumer Price Index Data in Indonesia,” in Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (ICEST), 2021, pp. 35–41. doi: 10.5220/0010037400350041.

A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” in The 3rd International Conference ofComputer, Environment, Agriculture, Social Science, Health Science, Engineering andTechnology (ICEST), 2021, pp. 22–28. doi: 10.5220/0010037200220028.

B. K. Sihotang and A. Wanto, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang,” Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Resilient method in determining the best architectural model for predicting open unemployment in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, p. 31, 2019, doi: 10.30645/ijistech.v3i1.30.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021, doi: 10.47709/cnahpc.v3i1.923.

M. Widyastuti, A. G. Fepdiani Simanjuntak, D. Hartama, A. P. Windarto, and A. Wanto, “Classification Model C.45 on Determining the Quality of Custumer Service in Bank BTN Pematangsiantar Branch,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012002, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012002.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.

M. A. Hanafiah, A. Wanto, and P. B. Indonesia, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” IJISTECH (International Journal of Information System and Technology), vol. 3, no. 36, pp. 315–322, 2020.

F. S. Napitupulu, I. S. Damanik, I. S. Saragih, and A. Wanto, “Algoritma K-Means untuk Pengelompokkan Dokumen Akta Kelahiran pada Tiap Kecamatan di Kabupaten Simalungun,” Building of Informatics, Technology and Science (BITS) Volume, vol. 2, no. 1, pp. 55–63, 2020.

J. Hu et al., “A novel landslide susceptibility mapping portrayed by OA-HD and K-medoids clustering algorithms,” Bulletin of Engineering Geology and the Environment, 2020, doi: 10.1007/s10064-020-01863-2.

D. N. Pinheiro, D. Aloise, and S. J. Blanchard, “Convex fuzzy k-medoids clustering,” Fuzzy Sets and Systems, vol. 389, pp. 66–92, 2020, doi: 10.1016/j.fss.2020.01.001.

X. Huang, M. Ren, and Z. Hu, “An Improvement of K-Medoids Clustering Algorithm Based on Fixed Point Iteration,” International Journal of Data Warehousing and Mining, vol. 16, no. 4, pp. 84–94, 2020, doi: 10.4018/IJDWM.2020100105.

BPS, “Impor Beras Menurut Negara Asal Utama, 2000-2022,” Publikasi Statistik Indonesia, 2023. https://www.bps.go.id/statictable/2014/09/08/1043/impor-beras-menurut-negara-asal-utama-2000-2022.html (accessed May 15, 2023).

L. Nguyen, “User Model Clustering,” Journal of Data Analysis and Information Processing, vol. 02, no. 02, pp. 41–48, 2014, doi: 10.4236/jdaip.2014.22006.

A. Wanto et al., Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.

DOI: http://dx.doi.org/10.30645/jurasik.v8i2.657

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v8i2.657.g632


  • There are currently no refbacks.

JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats