Implementasi Association Rules Untuk Market Basket Analysis Pada Toko “Hanael Embroidery”
(1) Universitas Widyatama, Bandung, Indonesia
(2) Universitas Widyatama, Bandung, Indonesia
(*) Corresponding Author
Abstract
The extremely tight competition in the business world means that business people must consider the best strategies to face competition. The most appropriate and competitive strategy now is to use information technology. The Hanael Embroidery Shop wants to increase the sales of its products so that it can be taken into account by other business competitors. In its daily life, the Hanael Embroidery Shop employs administrative staff to manage product sales and find the most sold products. Determining the layout and combination of goods based on consumer purchasing tendencies is one of the shop's solutions in developing the right marketing strategy to increase sales. This shop needs an application that can display product sales reports, making it easier for shop selectors to determine the proper promotion for the product. This paper will test the use of data mining using the Apriori Algorithm method to find the frequency of itemsets in a data set. A priori algorithm method that can adjust input values according to the criteria for items that have predetermined support and confidence values. The Apriori algorithm is a data mining algorithm that can be used in association rules to determine frequent itemsets that function to help find patterns in data. By using the Apriori algorithm, we obtained a group of shop products that are frequently purchased by customers, namely "Salvia Sweater", "Hoya Sweater", and "Lupine Clutch Bag Embroidery". This association is obtained with a minimum support value of 10% and a confidence value of 20% from 357 transactions. Based on the results of the tests that have been carried out, the designed application is successful. It can provide input and information on product combinations that shop customers often purchase.
Full Text:
PDFReferences
Sowmya, R., Suneetha, K.,R " Data Mining with Big Data". International Conference on Intelligent Systems and Control (ISCO) Vol 10, pp.1109, Februari 2017.
Fajar , R., A., W., Titin , K " Implementasi Data Mining Penjualan Produk Kosmetik Pada PT. Natural Nusantara Menggunakan Algoritma Apriori". Paradigma Vol. 22, No.1, pp. 85-90, Februari 2020.
Agrawal, R., Ramakrishan, S." Fast Algorithms for Mining Assocation Rules". IBM Almaden Reasearch Center. 1994.
Mohammad Badrul, "Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan". Jurnal Pilar Nusa Mandiri Vol 12 No 2, pp.1-3, 15 September (2016).
Lismardiana, “Pengembangan Algortima Apriori Untuk Pengambilan Keputusan”, Vol. 4 No. 2, pp.110-121, Desember (2015).
Safira, D.Y., Witanti, A " Implementasi Algoritma Apriori Untuk Analisis Penjualan Dengan Berbasis Web". In Seminar Nasional Multimedia & Artificial Intelligence 2021 Vol. 4, pp.1-3, 02 Desember (2021).
Gama, A.,W.,O., Putra,D.,G.,K.,Bayupati, A.,P." Implementasi Algoritma Apriori Untuk Menemukan Frequent Itemset Dalam Keranjang Belanja". Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016.
Elisa, E. " Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori ". Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), Vol 2 No 2. Pp.472-478, 06 Juli (2018).
Kusumo, H., Sediyono, E., Marwata, M. " Analisis Algoritma Apriori Untuk Mendukung Strategi Promosi Perguruan Tinggi ". Walisongo Journal of Information Technology, Vol. 1 No. 1, pp. 51-62 (2019)
DOI: http://dx.doi.org/10.30645/jurasik.v9i1.720
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i1.720.g695
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: