Klasifikasi Sentimen Positif dan Negatif pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine (SVM)

Hylmi Andreansyah(1*), S Sunardi(2),

(1) Universitas Stikubank, Indonesia
(2) Universitas Stikubank, Indonesia
(*) Corresponding Author


Gojek is an Indonesian decadent company seeing tremendous growth. Given the growing user base of the Gojek application, it is imperative for the firm to consistently maintain and enhance its services. Sentiment analysis is an efficient method for quickly collecting valuable textual information from a vast quantity of data. The objective of this study is to conduct sentiment analysis on comments from users of the Gojek application on the Google Play Store. The study procedure involves many stages: data gathering, data labeling, data preprocessing, feature extraction, and sentiment classification using the Support Vector Machine (SVM) algorithm. The dataset used consists of user comments from the Gojek application on the Google Play Store, collected via Kaggle, spanning from January to March 2023. This research shows that using the Support Vector Machine method to classify Gojek application user sentiment provides quite high accuracy results, with the highest value in the proportion scenario of 80% training data and 20% test data (accuracy 0.676).

Full Text:



M. N. Muttaqin And I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine Dan K Nearest Neighbor,” Unnes J. Math., Vol. 10, No. 2, Pp. 22–27, 2021, [Online]. Available: Http://Journal.Unnes.Ac.Id/Sju/Index.Php/Ujm

L. H. Vina Fitriyana, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” Jatisi (Jurnal Tek. Inform. Dan Sist. Informasi), Vol. 9, No. 4, Pp. 3436–3442, 2022, Doi: 10.35957/Jatisi.V9i4.3586.

A. J. Putri, A. S. Syafira, M. E. Purbaya, And D. Purnomo, “Analisis Sentimen E-Commerce Lazada Pada Jejaring Sosial Twitter Menggunakan Algoritma Support Vector Machine,” J. Trinistik J. Tek. Ind. Bisnis Digit. Dan Tek. Logistik, Vol. 1, No. 1, Pp. 16–21, 2022, Doi: 10.20895/Trinistik.V1i1.447.

D. Diandra Audiansyah, D. Eka Ratnawati, And B. Trias Hanggara, “Analisis Sentimen Aplikasi Myxl Menggunakan Metode Support Vectormachine Berdasarkan Ulasan Pengguna Di Google Play Store,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 6, No. 8, Pp. 3987–3994, 2022, [Online]. Available: Http://J-Ptiik.Ub.Ac.Id

Ismail, H. N. Rahmah, And R. Sulistiyowati, “Penggunaan Software Orange Data Mining Pada Implementasi Text Mining Dalam Analisis Sentimen Netizen Di Twitter Terhadap Kelangkaan Minyak Goreng,” Sigma-Mu, Vol. 14, No. 2, Pp. 1–11, 2022, Doi: 10.35313/Sigmamu.V14i2.4667.

Raksaka Indra Alhaqq, I Made Kurniawan Putra, And Yova Ruldeviyani, “Analisis Sentimen Terhadap Penggunaan Aplikasi Mysapk Bkn Di Google Play Store,” J. Nas. Tek. Elektro Dan Teknol. Inf., Vol. 11, No. 2, Pp. 105–113, 2022, Doi: 10.22146/Jnteti.V11i2.3528.

B. Pamungkas, M. E. Purbaya, And D. J. A.K, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (Svm) Pada Kasus Benih Lobster 2020,” J. Informatics, Inf. Syst. Softw. Eng. Appl., Vol. 3, No. 2, Pp. 10–20, 2021.

L. Mutawalli, M. T. A. Zaen, And W. Bagye, “Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto),” J. Inform. Dan Rekayasa Elektron., Vol. 2, No. 2, P. 43, 2019, Doi: 10.36595/Jire.V2i2.117.

DOI: http://dx.doi.org/10.30645/jurasik.v9i1.739

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i1.739.g714


  • There are currently no refbacks.

JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats