Rekomendasi Pemilihan Hotel Berbasis Chatbot dengan Framework Rasa Dengan Metode Natural Language Processing (NLP)

Ryke Putri Oktavianita(1*), Felix Andreas Sutanto(2),

(1) Universitas Stikubank Semarang, Indonesia
(2) Universitas Stikubank Semarang, Indonesia
(*) Corresponding Author

Abstract


This research discusses the development of a chatbot with the Framerowk Rasa platform which is integrated into the Telegram application to provide information about recommendations for selecting hotels in Semarang Regency. The aim is to make it easier for prospective hotel renters or tourists to find a hotel. In order to overcome this problem, artificial intelligence was developed in the form of a chatbot with a Natural Language Processing (NLP) approach. Chatbot technology enables more human and informative interactions with prospective hotel renters, helping them find hotels that match their preferences. By utilizing Natural Language Processing (NLP), chatbots can provide comprehensive information at any time, without being tied to operational hours or human presence. Apart from that, NLP also plays an important role in understanding human natural language and facilitating interactions between humans and machines. The Rasa framework, as an open source machine learning framework, provides the ability to build chatbots that understand human language and adapt to new data.

Full Text:

PDF

References


A. A. Sabili, A. Khalisa, dan R. K. Dewi, “69 | P a g e,” Jurnal Scientia, vol. 13, 2024, doi: 10.58471/scientia.v13i01.

A. D. Ferdian dan S. N. Anwar, “Pengembangan Chatbot untuk Informasi Wisata Interaktif di Tangerang Selatan menggunakan Framework Rasa,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 4, hlm. 476–483, Okt 2023, doi: 10.47233/jteksis.v5i4.953.

A. Rachman, I. Mardhiyah, dan M. Jannah, “KLIK: Kajian Ilmiah Informatika dan Komputer”, Implementasi Chatbot FAQ pada Aplikasi Monev Kinerja Direktorat Jenderal Anggaran Menggunakan Framework Rasa Open Source,” Media Online, vol. 4, no. 1, hlm. 62–72, 2023, doi: 10.30865/klik.v4i1.1020.

A. A. Chandra, V. Nathaniel, F. R. Satura, F. Dharma Adhinata, “Pengembangan Chatbot Informasi Mahasiswa Berbasis Telegram dengan Metode Natural Language Processing.”

J. Hirschberg dan C. D. Manning, “Advances in natural language processing,” Science, vol. 349, no. 6245. American Association for the Advancement of Science, hlm. 261–266, 17 Juli 2015. doi: 10.1126/science.aaa8685.

N. Cannavaro, “Aplikasi Chatbot untuk Layanan Akademik Menggunakan Platform RASA Open Source dengan Fitur Two Stage Fallback,” Jurnal Ilmu Komputer dan Informatika, vol. 3, no. 1, hlm. 53–64, Jun 2023, doi: 10.54082/jiki.73.

M. Zahir dan R. Adi Saputra, “Deteksi Penyakit Retinopati Diabetes Menggunakan Citra Mata Dengan Implementasi Deep Learning Cnn,” 2024. [Daring]. Tersedia pada: https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification.

F. Zakariya, J. Zeniarja, dan S. Winarno, “Jurnal Media Informatika Budidarma”, Pengembangan Chatbot Kesehatan Mental Menggunakan Algoritma Long Short-Term Memory,” 2024, doi: 10.30865/mib.v8i1.7177.

S. Nova, N. Khotimah, dan M. Y. Aryati Wahyuningrum, “Pemanfaatan Chatbot Menggunakan Natural Language Processing Untuk Pembelajaran Dasar-Dasar Gui Tkinter Pada Bahasa Pemrograman Python,” 2024.

Z. Z. Abidin, M. Danny, dan A. Muhidin, “Bulletin Of Computer Science Research”, Sistem Pengembangan Chatbot Whatsapp Untuk Monitoring Hasil Pembelajaran Siswa Sekolah Menngah Kejuruan,” 2023, doi: 10.47065/bulletincsr.v3i5.272.




DOI: http://dx.doi.org/10.30645/jurasik.v9i2.795

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i2.795.g770

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats