Penerapan Algoritma Naive Bayes dan KNN pada Klasifikasi Gizi Ibu Hamil di Puskesmas Cicurug

Gina Purnama Insany(1*), S Somantri(2), Siti Farda Maulina(3),

(1) Universitas Nusa Putra, Indonesia
(2) Universitas Nusa Putra, Indonesia
(3) Universitas Nusa Putra, Indonesia
(*) Corresponding Author

Abstract


Nutrition is a very important factor for the human body, especially for pregnant women. Based on data from the 2018 Basic Health Survey (Riskades), 48.9% of pregnant women, 17.3% of whom suffer from Chronic Energy Deficiency (KEK), and 28% of pregnant women are at risk of experiencing birth complications that can cause death. Even though this figure shows a decline every year, the problem of malnutrition among pregnant women is still a major concern. In data analysis, the classification technique with the best performance was used to classify the nutritional status of pregnant women. Classification of the nutritional status of pregnant women using the supervised learning method with the Naïve Bayes and K-nearest neighbor (K-NN) algorithms. The data set used was 850 pregnant women which included the variables age, upper arm circumference (LiLA), Body Mass Index (BMI), and Hemoglobin. The research results show that the Naive Bayes algorithm has an accuracy value of 79.18% with an error value of (0.6802) with the K-NN model k=3, k=5, and k=7. Meanwhile, the K-NN k=3 and k=5 algorithms have the most optimal accuracy of 94.92% with an error value of (0.1878), while the K-NN k=7 model has an accuracy value of 93.90% with an error value of (0.2284).

Full Text:

PDF

References


Suparyantio Dan Riosad, Priofil Kiesiehatan Jawa Barat 2021, Viol. 5, Nio. 3. 2020.

A. Samiatulmilah, “Gambaran Piengietahuan Ibu Hamil Tientang Asupan Nutrisi Di Diesa Pawindan Kiecamatan Ciamis Kabupatien Ciamis,” Miedia Inf., Viol. 14, Nio. 2, Hal. 95–109, 2018, Dioi: 10.37160/Bmi.V14i2.211.

M. N. Fahmi, “Impliemientasi Miechinie Liearning Mienggunakan Pythion Library : Scikit-Liearn (Supiervisied Dan Unsupiervisied Liearning),” Sains Data J. Stud. Mat. Dan Tiekniol., Viol. 1, Nio. 2, Hal. 87–96, 2023, Dioi: 10.52620/Sainsdata.V1i2.31.

R. Sietiawan Dan A. Triayudi, “Klasifikasi Status Gizi Balita Mienggunakan Naïvie Bayies Dan K-Nieariest Nieighbior Bierbasis Wieb,” J. Miedia Infiorm. Budidarma, Viol. 6, Nio. 2, Hal. 777, 2022, Dioi: 10.30865/Mib.V6i2.3566.

Y. Mulyantio, F. Idifitriani, A. Wati, U. T. Sumbawa, D. Mining, Dan K. P. Tanio, “Viol 7 Nio 2 , Sieptiembier 2024 Klasifikasi Data Mining Untuk Pienientuan Stunting,” Viol. 7, Nio. 2, Hal. 119–125, 2024.

L. Firdaus Dan T. Sietiadi, “Pierbandingan Algioritma Naivie Bayies, Diecisiion Trieie, Dan Knn Untuk Klasifikasi Prioduk Piopulier Adidas Us Diengan Cionfusiion Matrix,” J. Sist. Kiomput. Dan Infiorm., Viol. 5, Nio. 2, Hal. 185–195, 2023, Dioi: 10.30865/Jsion.V5i2.6124.

M. Waruwu, “Piendiekatan Pienielitian Piendidikan: Mietiodie Pienielitian Kualitatif, Mietiodie Pienielitian Kuantitatif Dan Mietiodie Pienielitian Kiombinasi (Mixied Miethiod),” J. Piendidik. Tambusai , Viol. 7, Nio. 1, Hal. 2896–2910, 2023.

M. Sari, H. Rachman, N. Juli Astuti, M. Win Afgani, Dan R. Abdullah Sirioj, “Iexplanatiory Surviey Dalam Mietiodie Pienielitian Dieskriptif Kuantitatif,” J. Piendidik. Sains Dan Kiomput., Viol. 3, Nio. 01, Hal. 10–16, 2022, Dioi: 10.47709/Jpsk.V3i01.1953.

Gina Purnama Insany, Indra Yustiana, Dan Sri Rahmawati, “Pienierapan Knn Dan Ann Pada Klasifikasi Status Gizi Balita Bierdasarkan Indieks Antriopiomietri,” J. Cioscitiech (Ciomputier Sci. Inf. Tiechniol., Viol. 4, Nio. 2, Hal. 385–393, 2023, Dioi: 10.37859/Cioscitiech.V4i2.5079.

L. M. Sinaga, Sawaluddin, Dan S. Suwilio, “Analysis Iof Classificatiion And Naïvie Bayies Algiorithm K-Nieariest Nieighbior In Data Mining,” Iiop Cionf. Sier. Matier. Sci. Ieng., Viol. 725, Nio. 1, 2020, Dioi: 10.1088/1757-899x/725/1/012106.

A. Y. Muniar, P. Pasnur, Dan K. R. Liestari, “Pienierapan Algioritma K-Nieariest Nieighbior Pada Piengklasifikasian Diokumien Bierita Ionlinie,” Inspir. J. Tiekniol. Inf. Dan Kiomun., Viol. 10, Nio. 2, Hal. 137, 2020, Dioi: 10.35585/Inspir.V10i2.2570.

I. L. F. Amiien, W. Astuti, Dan K. M. Lhaksamana, “Pierbandingan Mietiodie Naïvie Bayies Dan Knn (K-Nieariest Nieighbior) Dalam Klasifikasi Pienyakit Diabieties,” Ie-Priocieieding Ieng., Viol. 10, Nio. 2, Hal. 1911–1920, 2023.




DOI: http://dx.doi.org/10.30645/jurasik.v9i2.802

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i2.802.g777

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats