Perbandingan Naїve Bayes Classifier Dan Support Vector Machine Dalam Mengklasifikasikan Tingkat Pengangguran Terbuka Di Indonesia

Dhita Diana Dewi(1*), Ivana Lucia Kharisma(2), Nida Aulia Salsa Bila(3),

(1) Universitas Nusa Putra, Sukabumi, Indonesia
(2) Universitas Nusa Putra, Sukabumi, Indonesia
(3) Universitas Nusa Putra, Sukabumi, Indonesia
(*) Corresponding Author

Abstract


Unemployment is one of the factors of problems in the economic field, this will have an impact on the balance of the economy. A person can be said to be unemployed if the person does not meet the requirements as a workforce. Open unemployment is a workforce that does not actually have a job. Therefore, this study will classify the Open Unemployment Rate (TPT) in Indonesia in the 2020-2023 period. This study will use the Naїve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. In the SVM algorithm method, for the negative class consists of a precision value of 62%, a recall of 80%, an F1 Score of 70%. While for the positive class consists of a precision value of 87%, a recall of 72%, an F1 Score of 79%. In the NBC algorithm method, for the negative class consists of a precision value of 71%, a recall of 50%, an F1 Score of 59%. While for the positive class consists of a precision value of 76%, a recall of 89%, an F1 Score of 82%. Based on these calculations, the accuracy value of each algorithm has the same accuracy value, which is 75%.

Full Text:

PDF

References


Badan Pusat Statistik, “Berita Resmi Statistik: Keadaan Ketenagakerjaan Indonesia Agustus 2023,” Badan Pus. Stat., vol. 11, no. 84, pp. 1–28, 2023.

H. Andreansyah, “Klasifikasi Sentimen Positif dan Negatif pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine ( SVM ),” vol. 9, pp. 329–336, 2024.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

A. Sentimen, P. Maskapai, H. C. Husada, and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine ( SVM ) Sentiment Analysis of Airline on Twitter Platform Using Support Vector Machine ( SVM ) Algorithm,” vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.




DOI: http://dx.doi.org/10.30645/jurasik.v9i2.811

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i2.811.g785

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats