Time Series Implementation for Sales Forecasting of Furniture Products at PT XYZ

Pragnanta Yopie Pramastya(1*), Evangs Mailoa(2),

(1) Universitas Kristen Satya Wacana, Salatiga, Indonesia
(2) Universitas Kristen Satya Wacana, Salatiga, Indonesia
(*) Corresponding Author

Abstract


PT XYZ is an importer, distributor, and seller of furniture. The company operates in two business lines: B2B (Business to Business) and B2C (Business to Consumer). The B2B segment is divided into Agents/Local Distributors, Modern Trade, and Partner Retail Stores, while the B2C segment is divided into Direct Sales and Online Intermediaries. This study applies the Time Series method to forecast future furniture sales using the SARIMA (Seasonal Autoregressive Integrated Moving Average) model. The results of the study using the SARIMA model provide sales forecasts from 2024 to 2026.

Full Text:

PDF

References


D. D. Prasetya Et Al., “Analisis Strategi Pemasaran Guna Meningkatkan Penjualan Furniture Pada Finture . Id ( Marketing Strategy Analysis To Increase Furniture Sales At Finture . Id ) Pendahuluan,” Pp. 36–41, 2022.

Salwa, N. Tatsara, R. Amalia, And A. F. Zohra, “Peramalan Harga Bitcoin Menggunakan Metode Arima Autoregressive Integrated Moving Average ,” J. Data Anal., Vol.1, No.1, Pp. 21–31, 2018, Doi: 10.24815/Jda.V1i1.11874

W. Satria, “Jaringan Syaraf Tiruan Backpropagation Untuk Peramalan Penjualan Produk (Studi Kasus Di Metro Electronic Dan Furniture),” Djtechno J. Teknol. Inf., Vol. 1, No. 1, Pp. 14–19, 2021, Doi: 10.46576/Djtechno.V1i1.966

A. Kurniawati, M. S. Ahmad, M. Fhadli, And S. Lutfi, “Analisis Perbandingan Metode Time Series Forecasting Untuk Prediksi Penjualan Obat Di Apotek ( Studi Kasus : Kimia Farma Apotek Takoma) Vol. 3, No. 1, Pp. 96–106, 2023, Doi: 00.0000/Jati.

M. H. Widiyanto, R. Mayasari, F. I. Komputer, U. S. Karawang, And T. Timur, “Implementasi Time Series Pada Data Penjualan Di Gaikindo Menggunakan Algoritma Seasonal Sarima,” Vol. 7, No. 3, Pp. 1501–1506, 2023.

K. Silalahi, “Forecasting Of Poverty Data Using Seasonal Arima Modeling In West Java Province,” Vol. 4, No. 1, Pp. 76–86, 2020.

Utomo, P. (2020). Peramalan Jumlah Penumpang Kereta Api Di Indonesia Menggunakan Metode Seassonal Autoregressive Integrated Moving Average (Doctoral Dissertation, Uin Sunan Ampel Surabaya).

S. Suseno And Suryo Wibowo, “Penerapan Metode Arima Dan Sarima Pada Peramalan Penjualan Telur Ayam Pada Pt Agromix Lestari Group,” J. Teknol. Dan Manaj. Ind. Terap., Vol. 2, No. I, Pp. 33–40, 2023, Doi: 10.55826/Tmit.V2ii.85.

G. Christie, D. Hatidja, And R. Tumilaar, “Penerapan Metode Sarima Dalam Model Intervensi Fungsi Step Untuk Memprediksi Jumlah Pegunjung Objek Wisata Londa (Application Of The Sarima Method In The Step Function Intervention To Predict The Number Of Visitors At Londa Tourism Object),” J. Ilm. Sains, Vol. 22, No. 2, P. 96, 2022, Doi: 10.35799/Jis.V22i2.40961.

A. F. Muzakki, D. Aditama, And I. Gita Anugrah, “Penerapan Metode Autoregressive Integrated Moving Average Untuk Memprediksi Penggunaan Barang Medis Pada Logistik Medis Rumah Sakit Muhammadiyah Gresik,” Indexia, Vol. 4, No. 1, P. 1, 2022, Doi: 10.30587/Indexia.V4i1.3595.

Y. I. Katabba, “Metode Seasonal Autoregressive Integrated Moving Average (Sarima) Untuk Memprediksi Jumlah Penumpang Kereta Api Di Pulau Sumatera,” P. 83, 2021.




DOI: http://dx.doi.org/10.30645/jurasik.v9i2.818

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v9i2.818.g792

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats