Selecting Best Factors Using Information Gain To Improve Merchant Eligibility Classification

Muhamad Irvan Dandung(1*), Bagus Priambodo(2),

(1) Universitas Mercu Buana, Jakarta, Indonesia
(2) Universitas Mercu Buana, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Currently, the financial technology sector growing rapidly. Digital payments significantly drive the digital economy. Payment Service Providers (PSPs) play a crucial role in offering digital payment services and identifying eligible merchants for loan recommendations. The data need further analysis to get accurate load recommendations. This study focuses on supporting the development of merchant businesses, particularly Micro, Small, and Medium Enterprises (MSMEs), by enhancing loan eligibility analysis through the use of machine learning. Information Gain applied to find the best factors to classify merchant eligibility. The factors obtained were then classified using two machine learning algorithms that are Naïve Bayes and K-Nearest Neighbors (KNN). The experiment result shows that classifying merchant eligibility using naïve Bayes and KNN based on selected factors obtained from information gain has better accuracy than based on all factors. These findings demonstrate the importance of selecting relevant variables for more accurate analysis. The results of this study contribute to the understanding of machine learning applications in financial decision-making, offering real solutions for merchant eligibility analysis and supporting the growth of the digital economy

Full Text:

PDF

References


Admin Winpay, “Digitalisasi Pembayaran Sebagai Pendorong Ekonomi Digital Indonesia!,” Winpay Id. Accessed: May 11, 2024. [Online]. Available: Https://Www.Winpay.Id/Digitalisasi-Pembayaran-Sebagai-Pendorong-Ekonomi-Digital-Indonesia/

Admin Bri Api, “Menilik Tren Pembayaran Digital Di Indonesia Dan Peran Briapi Di Dalamnya,” Bri Api. Accessed: May 11, 2024. [Online]. Available: Https://Developers.Bri.Co.Id/Id/News/Menilik-Tren-Pembayaran-Digital-Di-Indonesia-Dan-Peran-Briapi-Di-Dalamnya

Admin Bi, “Penyelenggara Jasa Sistem Pembayaran,” Bank Indonesia. Accessed: May 12, 2024. [Online]. Available: Https://Www.Bi.Go.Id/Id/Fungsi-Utama/Sistem-Pembayaran/Perizinan/Default.Aspx

Admin Faspay, “Pentingnya Sistem Pembayaran E-Payment Untuk Bisnis,” Faspay. Accessed: May 12, 2024. [Online]. Available: Https://Faspay.Co.Id/Id/Pentingnya-Menggunakan-Sistem-Pembayaran-E-Payment-Di-Indonesia/

Zairi Saputra, H. A. Supahri, R. Ismanizan, And R. Rahmaddeni, “Perbandingan Algoritma Knn (K-Nearest Neighbors), Naïve Bayes, Dan Svm (Support Vector Machine) Untuk Klasifikasi Pemberian Pinjaman Nasabah,” Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (Jisti), Vol. 7, No. 1, Pp. 67–75, Apr. 2024, Doi: 10.57093/Jisti.V7i1.182.

I. Priyanto Et Al., “Penerapan Algoritma Metode Naïve Bayes Untuk Penentuan Penerimaan Bantuan Program Indonesia Pintar (Pip) (Studi Kasus Smp Pgri 1 Cilacap),” Jurnal Manajemen Informatika Jayakarta, Vol. 4, No. 2, Pp. 162–172, 2024, Doi: 10.52362/Jmijayakarta.V4i2.1355.

N. W. Mardiyyah, N. Rahaningsih, And I. Ali, “Penerapan Data Mining Menggunakan Algoritma K-Nearest Neighbor Pada Prediksi Pemberian Kredit Di Sektor Finansial,” 2024. [Online]. Available: Www.Kaggle.Com

S. Martha, W. Andani, And S. W. Rizki, “Perbandingan Metode K-Nearest Neighbor, Regresi Logistik Biner, Dan Pohon Klasifikasi Pada Analisis Kelayakan Pemberian Kredit,” Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, Vol. 10, No. 2, Pp. 262–273, Nov. 2022, Doi: 10.34312/Euler.V10i2.16751.

B. Mega Pratiwi And N. Q. Nada, “Penerapan Model Machine Learning Dalam Menentukan Rekomendasi Objek Wisata Provinsi Jawa Tengah,” 2022.

G. I. E. Soen, M. Marlina, And R. Renny, “Implementasi Cloud Computing Dengan Google Colaboratory Pada Aplikasi Pengolah Data Zoom Participants,” Jitu : Journal Informatic Technology And Communication, Vol. 6, No. 1, Pp. 24–30, Jun. 2022, Doi: 10.36596/Jitu.V6i1.781.

R. N. Melinda, L. Meitya Ningrum, I. B. Suryabrata, G. Swarna Bayu, A. Dwipa, And T. P. Sukoco, “Program Perhitungan Rab Pekerjaan Struktur Baja (Wf Beam) Menggunakan Bahasa Python,” Tiers Information Technology Journal, Vol. 2, No. 1, Pp. 31–38, 2021, [Online]. Available: Https://Journal.Undiknas.Ac.Id/Index.Php/Tiers

E. Rahmanita, Y. D. P. Negara, Y. Kustiyahningsih, V. Sasmeka, And B. K. Khotimah, “Implementasi Metode Naïve Bayes Dan Information Gain Untuk Klasifikasi Penyakit Dan Hama Tanaman Jagung,” Teknika, Vol. 12, No. 3, Pp. 198–204, Oct. 2023, Doi: 10.34148/Teknika.V12i3.684.

E. Rahayu, N. Irawati, And R. Ananda, “Sistemasi: Jurnal Sistem Informasi Klasifikasi Kelayakan Warga Penerima Bpnt Dengan Algoritma K-Nearest Neighbor Classification Of Eligibility For Bpnt Recipients Using The K-Nearest Neighbor Algorithm.” [Online]. Available: Http://Sistemasi.Ftik.Unisi.Ac.Id

R. Widyasari, M. Adi Putri Siregar, S. Dan Teknologi, And K. Kunci-Klasifikasi, “Hybrid Naive Bayes Classifier Dan Markov Chain Untuk Prediksi Tingkat Penggunaan Quick Response Indonesian Standard (Qris),” Jifotech (Journal Of Information Technology, Vol. 4, No. 1, 2024.

J. Khatib Sulaiman, A. Syakur, R. Purwandi Putra, C. Juliane, S. Likmi Bandung, And S. Tinggi Ilmu Kesehatan Sukabumi, “Optimalisasi Metode Naive Bayes Classifier Untuk Prediksi Persetujuan Kredit,” Indonesian Journal Of Computer Science Attribution, Vol. 13, No. 1, Pp. 2024–1091.

M. Fatchan, I. K. Nanang Tedi, And E. Widodo, “Perbandingan Dalam Memprediksi Penyakit Liver Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor Abstrak Informasi Artikel,” Jurnal Pelita Teknologi, Vol. 16, No. 1, Pp. 15–21.

D. K. Purba, I. M. Sarkis, And A. Situmorang, “Penentuan Kelayakan Pemberian Kredit Pada Nasabah Cu Merdeka Berastagi Dengan Menggunakan Algoritma K-Nearest Neighbor (K-Nn),” 2024. [Online]. Available: Https://Ejurnal.Methodist.Ac.Id/Index.Php/Methosisfo

B. Aji Santoso And A. Dwi Hartanto, “Comparison Of Accuracy Levels Of Random Forest And K-Nearest Neighbor (Knn) Algorithms For Classifying Smooth Bank Credit Payments,” Jurnal Teknik Informatika (Jutif), Vol. 5, No. 1, Pp. 77–87, 2024, Doi: 10.52436/1.Jutif.2024.5.1.1195.

D. Sartika And I. Saluza, “Penerapan Metode Principal Component Analysis (Pca) Pada Klasifikasi Status Kredit Nasabah Bank Sumsel Babel Cabang Km 12 Palembang Menggunakan Metode Decision Tree.”




DOI: http://dx.doi.org/10.30645/jurasik.v10i1.854

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i1.854.g829

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats