Penerapan K-Means Clustering Untuk Mengelompokan Tingkat Kemiskinan Di Provinsi Kalimantan Barat

Samsul Dwi Cahyo(1*), Irmawati Tri Wahyuni(2), Revalyna Octavia Maharani(3), Maulana Nurfaizi(4), Rujianto Eko Saputro(5), T Tarwoto(6),

(1) Universitas AMIKOM Purwokerto, Indonesia
(2) Universitas AMIKOM Purwokerto, Indonesia
(3) Universitas AMIKOM Purwokerto, Indonesia
(4) Universitas AMIKOM Purwokerto, Indonesia
(5) Universitas AMIKOM Purwokerto, Indonesia
(6) Universitas AMIKOM Purwokerto, Indonesia
(*) Corresponding Author

Abstract


This study aims to use the K-means clustering algorithm to categorize poverty levels in the West Kalimantan province. The data used for clustering represents poverty levels across four districts: Melawi, Kapuas Hulu, Sekadau, and Kayong Utara. The K-means clustering method is employed to group these districts based on similarities in their poverty levels. The clustering results reveal four distinct categories of poverty levels: Cluster 0 represents areas with very high poverty rates; Cluster 1 shows Melawi with a high poverty rate; Cluster 2 includes Sambas, Kapuas Hulu, and Sintang, with relatively low poverty rates; and Cluster 3 includes Landak, Sanggau, and Ketapang, with high poverty rates. The analysis reveals interesting patterns in the distribution of poverty across West Kalimantan, which can assist local governments in designing more effective policies for poverty reduction. This study makes a significant contribution to understanding poverty dynamics in West Kalimantan and provides a basis for more efficient decision-making in poverty alleviation efforts.


Full Text:

PDF

References


T. Agus Triono and R. C. Sangaji, “Faktor Mempengaruhi Tingkat Kemiskinan di Indonesia: Studi Literatur Laporan Data Kemiskinan BPS Tahun 2022,” J. Soc. Bridg., vol. 1, no. 1, pp. 59–67, 2023, doi: 10.59012/jsb.v1i1.5.

N. Islami and A. Anis, “Pengaruh Upah Minimum Provinsi, Pendidikan Dan Kesehatan Terhadap Kemiskinan Di Indonesia,” J. Kaji. Ekon. dan Pembang., vol. 1, no. 3, p. 939, 2019, doi: 10.24036/jkep.v1i3.7721.

G. Anuraga, “Hierarchical Clustering Multiscale Boostrap untuk Pengelompokkan Kemiskinan di Jawa Timur,” Statistika, vol. 1, pp. 27–33, 2015.

S. Beni, “Pemberdayaan Anggota Credit Union Sebagai Upaya Pengentasan Kemiskinan Di Kalimantan Barat,” Sebatik, vol. 25, no. 1, pp. 195–200, 2021, doi: 10.46984/sebatik.v25i1.1339.

Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 192, 2020, doi: 10.24114/cess.v5i2.18519.

A. Dubey and M. Arif Kamal, “Evaluating Energy Efficiency in Traditional Architecture with Reference to Criterion 8 of GRIHA,” Am. J. Civ. Eng. Archit., vol. 10, no. 1, pp. 16–22, 2022, doi: 10.12691/ajcea-10-1-3.

A. Rusmana, “Pengantar Pengolahan Data dan Informasi,” Skom4437/Modul, p. 2, 2015.

H. Nabila, D. Retno, and S. Saputro, “Clustering Data Campuran Numerik dan Kategorik Menggunakan Algoritme Ensemble Quick RObust Clustering using linKs ( QROCK ),” Prism. Pros. Semin. Nas. Mat., vol. 5, no. 1, pp. 716–720, 2022.

S. Regina, E. Sutinah, and N. Agustina, “Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 573, 2021, doi: 10.30865/mib.v5i2.2909.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, p. 96, 2021.




DOI: http://dx.doi.org/10.30645/jurasik.v10i1.855

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i1.855.g830

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats