Analisis Metode Support Vector Machine (SVM) Dan Random Forest Terhadap Perilaku Dan Prestasi Siswa Berbasis Kurikulum Merdeka Di SMK Negeri 1 Stabat

I Ibrahim(1*), Muhammad Iqbal(2), K Khairul(3),

(1) Universitas Pembangunan Panca Budi, Medan, Indonesia
(2) Universitas Pembangunan Panca Budi, Medan, Indonesia
(3) Universitas Pembangunan Panca Budi, Medan, Indonesia
(*) Corresponding Author

Abstract


This study analyzes the influence of student behavior on academic achievement at SMKN 1 Stabat, using a quantitative approach with simple linear regression analysis on 245 tenth-grade students. The results show a positive and significant influence, with a coefficient of determination (R²) value of 0.272, indicating that student behavior contributes 27.2% to academic achievement. Discipline and responsibility are the most influential behavioral aspects, where students with high discipline tend to be more consistent in learning and completing assignments. The implications of this study highlight the importance of character building and positive behavior development within the school environment through collaboration among teachers, parents, and school administrators. Although not the sole determinant of success, good behavior such as discipline, responsibility, and active learning has been proven to enhance student learning outcomes. Therefore, efforts to improve the quality of education should consider not only cognitive aspects but also the development of constructive behavior through guidance programs and the strengthening of intrinsic motivation.

Full Text:

PDF

References


Adolph, R. (2016). Implementasi Dan Problematika Merdeka Belajar Muhajir.

Anis, Y., Listiyono, H., Wahyudi, E. N., & Mulyani, S. (2024). Pelatihan Tracer Study Siswa SMK-01 Tonjong Brebes Untuk Mengukur Lulusan Pendidikan Vokasi. 02, 93–99.

Artikel, I. (2025). Perancangan Sistem Informasi Manajemen KSP Kencana Bakti untuk Meningkatkan Efisiensi Pengelolaan Data Anggota dan Simpan Pinjam. 6(1), 634–641.

Artikel, R., Suhanjoyo, B. W., Suteja, B. R., & Toba, H. (2023). Deteksi Tindak Kecurangan Penjualan di Perusahaan Distribusi Menggunakan Machine Learning Fraud Detection in Sales of Distribution Companies Using Machine Learning. 9, 300–312.

Deva, C., & Wahyuni, E. (n.d.). Penerapan Algoritma Supervised Machine Learing dalam Optimalisasi Model Klasifikasi Risiko Kardiovaskular Serangan Jantung. 1–19.

Dwi, J., Amrullah, R., Prasetya, F. B., Rahma, A. S., Setyorini, A. D., Salsabila, A. N., Nuraisyah, V., & Jember, U. (2024). Efektivitas Peran Kurikulum Merdeka terhadap Tantangan Revolusi Industri 4 . 0 bagi Generasi Alpha. 4, 1313–1328.

Farhan, N. M., & Setiaji, B. (2023). Indonesian Journal of Computer Science.IndonesianJournalofComputerScience,12(2),284–301. http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135

Fathirachman Mahing, N., Lazuardi Gunawan, A., Foresta Azhar Zen, A., Abdurrachman Bachtiar, F., & Agung Wicaksono, S. (2023). Klasifikasi Tingkat Stress dari Data Berbentuk Teks dengan Menggunakan Algoritma Support Vector Machine (SVM) dan Random Forest. Jurnal Teknologi InformasiDanIlmuKomputer,10(7),1527–1536. https://doi.org/10.25126/jtiik.1078010

Gardner, C. (2020). Classifying Imbalanced Financial Fraud Data Utilizing Enhanced Random Forest Algorithm Classifying Imbalanced Financial Fraud Data Utilizing Enhanced Random Forest Algorithm.

Hadi, S., Sholihah, Q., & Warsiman, W. (2022). Pembelajaran Inovatif Pendidikan Karakter Pada Mata Kuliah Bahasa Indonesia Meningkatkan Kualitas Sikap, Minat, dan Hasil Belajar Siswa. Briliant: Jurnal Riset Dan Konseptual, 7(4), 905. https://doi.org/10.28926/briliant.v7i4.1148

Hidayat, I., Iqbal, M., Marlina, L., Putera, A., & Siahaan, U. (2025). Analysis Of Heart Failure Prediction. 4(1).

Iqbal, M., Hamdani, Hasibuan, M. S., & Nababan, A. A. (2022). Neuro Network Techniques of Telemetry Multivariate Time Series Processing and Their Applications in Industry. Journal of Theoretical and Applied Information Technology, 100(9), 2696–2702.

Iqbal, M., Nazar, N., Erliana, C. I., Irwansyah, D., Kurniasih, N., Susilo, E., Iskandar, A., Suryani, R., Supriyono, Sudarmaji, Permana, E. P., Erwinsyah, A., Sujinah, Haimah, & Sudarsana, I. K. (2019). Prototype of Learning Applications for Modern Cryptographic Techniques Using RC4 Algorithms to Support Computer Security Courses. Journal of Physics:ConferenceSeries, 1363(1). https://doi.org/10.1088/1742-6596/1363/1/012068

Iqbal, M., Zarlis, M., Tulus, & Mawengkang, H. (2019). Meta-Heuristic Development in Combinatorial Optimization. Journal of Physics: Conference Series, 1255(1). https://doi.org/10.1088/1742-6596/1255/1/012091

Jie, H. (2022). Student Achievement and Cognitive Behavior Prediction Using Data Mining Techniques. 4(1), 66–78.

Khairul, Machrizal, R., Dimenta, R. H., Rambe, B. H., Hanum, F., & Limbong, C. H. (2021). The population dynamics of Helostoma temminckii in the swampy waters of Barumun River, South Labuhan Batu Regency, Indonesia. AACL Bioflux, 14(2), 635–642.

Khairul, Wijaya, R. F., Siahaan, A. P. U., Aryza, S., Hulu, F. N., Rusiadi, Aspan, H., Putra Nasution, M. D. T., Rossanty, Y., Napitupulu, D., & Arisandi, D. (2018). Effect of matrix size in affecting noise reduction level of filtering. International Journal of EngineeringandTechnology(UAE),7(3),1272–1275. https://doi.org/10.14419/ijet.v7i3.11333.




DOI: http://dx.doi.org/10.30645/jurasik.v10i1.888

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i1.888.g862

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats