Analisis Metode FMEA Dan SPC Pada Proyeksi Losses Produksi Dan Prediksi Perawatan Pompa Minyak Di PT.Pertamina Ep Zona 1 Rantau Field Kuala Simpang
(1) Universitas Pembangunan Panca Budi, Medan, Indonesia
(2) Universitas Pembangunan Panca Budi, Medan, Indonesia
(3) Universitas Pembangunan Panca Budi, Medan, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
“PT. Pertamina EP.” Accessed: May 16, 2025. [Online]. Available: https://pep.pertamina.com/Sejarah
P. F. Orrù, A. Zoccheddu, L. Sassu, C. Mattia, R. Cozza, and S. Arena, “Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry,” Sustainability 2020, Vol. 12, Page 4776, vol. 12, no. 11, p. 4776, Jun. 2020, doi: 10.3390/SU12114776.
P. Studi Teknik Lingkungan Fakultas Teknik Universitas Batanghari Jambi, A. Nurrahman, E. Permana, and A. Musdalifah, “Analisa Kehilangan Minyak (Oil Losses) Pada Proses Produksi Di Pt X,” Jurnal Daur Lingkungan, vol. 4, no. 2, pp. 59–63, Sep. 2021, doi: 10.33087/DAURLING.V4I2.89.
“Advancements in Predictive Maintenance in the Oil and Gas Industry - Energies Media.” Accessed: May 16, 2025. [Online]. Available: https://energiesmedia.com/advancements-in-predictive-maintenance-in-the-oil-and-gas-industry/
Y. Deddy Hermawan and D. Kristanto, “Oil Losses Problem in Oil and Gas Industries,” 2021. [Online]. Available: www.intechopen.com
I. Assagaf, A. Sukandi, A. A. Abdillah, S. Arifin, and J. L. Ga, “Machine Predictive Maintenance by Using Support Vector Machines,” Recent in Engineering Science and Technology, vol. 1, no. 01, pp. 31–35, Jan. 2023, doi: 10.59511/RIESTECH.V1I01.6.
J. Hasil et al., “Implementasi Metode Failure Mode Effect and Analisys (FMEA) Pada Siklus Air PLTU,” Jurnal Teknik Industri: Jurnal Hasil Penelitian dan Karya Ilmiah dalam Bidang Teknik Industri, vol. 8, no. 2, pp. 110–118, Dec. 2022, doi: 10.24014/JTI.V8I2.19369.
H. C. Liu, L. Liu, and N. Liu, “Risk evaluation approaches in failure mode and effects analysis: A literature review,” Expert Syst Appl, vol. 40, no. 2, pp. 828–838, Feb. 2013, doi: 10.1016/J.ESWA.2012.08.010.
“Analisis Oil Losses Pada Stasiun Perebusan Produksi Crude Palm Oil (CPO) Menggunakan Metode Statistical Process Control (SPC) | Jurnal Teknologi dan Manajemen Industri Terapan.” Accessed: May 16, 2025. [Online]. Available: https://jurnal-tmit.com/index.php/home/article/view/67
I. Madanhire and C. Mbohwa, “Application of Statistical Process Control (SPC) in Manufacturing Industry in a Developing Country,” Procedia CIRP, vol. 40, pp. 580–583, Jan. 2016, doi: 10.1016/J.PROCIR.2016.01.137.
Z. Sitorus, E. Hariyanto, and F. Kurniawan, “Analysis of Artificial Intelligence Machine Learning Technology for Mapping and Predicting Flood Locations in Pahlawan Batu Bara Village,” International Journal Of Computer Sciences and Mathematics Engineering, vol. 2, no. 2, pp. 281–288, Nov. 2023, doi: 10.61306/IJECOM.V2I2.54.
M. Sunjaya, Z. Sitorus, Khairul, M. Iqbal, and A. P. U. Siahaan, “Analysis of machine learning approaches to determine online shopping ratings using naïve bayes and svm,” International Journal Of Computer Sciences and Mathematics Engineering, vol. 3, no. 1, pp. 7–16, May 2024, doi: 10.61306/IJECOM.V3I1.60.
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,” Expert Syst Appl, vol. 73, pp. 220–239, May 2017, doi: 10.1016/J.ESWA.2016.12.035.
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep Learning and Its Applications to Machine Health Monitoring: A Survey”.
DOI: http://dx.doi.org/10.30645/jurasik.v10i1.889
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i1.889.g863
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: