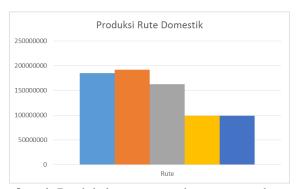
Penerapan Machine Learning Dalam Memprediksi Produksi Rute Pergerakan Pesawat Domestik di Indonesia

Rika Setiana¹, Widya Try Taradipa², Agus Perdana Windarto³

1,2,3</sup>Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar,
Indonesia

Email: ¹rikasetiana957@gmail.com, ²widyatritara3@gmail.com, ³agus.perdana@amiktunasbangsa.ac.id


Abstract

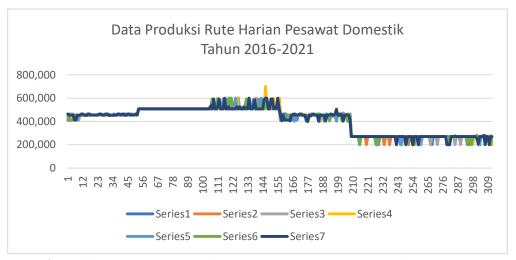
Seiring terjadinya pandemi Covid-9 di Indonesia, jumlah penumpang pesawat di Indonesia mengalami penurunan. Penurunan jumlah penumpang mengakibatkan jumlah rute pergerakan domestik menurun. Perlu ada kajian yang mendalam mengenai prediksi jumlah rute penerbangan domestik ke depan agar pihak maskapai dapat melakukan pengaturan jadwal penerbangan domestik kembali agar tidak mengalami kerugian akibat operasional yang tidak sesuai dengan pemasukan. Solusi yang digunakan pada permasalahan ini adalah menggunakan metode machine learning untuk memprediksi produksi rute pergerakan pesawat domestik. Algoritma yang digunakan adalah algoritma backpropagation dengan dua metode yaitu conjugate gradient fletcher reeves dan powellbeale. Hasil pelatihan dan pengujian menggunakan algoritma backpropagation dengan kedua metode menujukkan bahwa metode powell-beale adalah metode yang terbaik dengan nilai performance pengujian terkecil adalah = 0,0010 dengan epoch 34.

Keywords: Machine Learning, Backpropagation, Conjugate Gradient, Powell-Beale, Prediksi

1. Pendahuluan

Transportasi udara di Indonesia memiliki peran yang sangat penting untuk mobilitas barang maupun manusia. Transportasi udara mempermudah manusia untuk menjangkau wilayah-wilayah di Indonesia maupun dunia. Wilayah-wilayah terpencil seperti di pulau Papua, Sumatera, dan Kalimantan dapat di jangkau dengan mudah dengan menggunakan transportasi udara[1]. Berdasarkan data laporan Airnav Indonesia tahun 2021, produksi rute pergerakan pesawat domestik tahun 2018 sampai dengan tahun 2021 mengalami penurunan. Grafik produksi rute pesawat dapat dilihat pada Gambar 1.

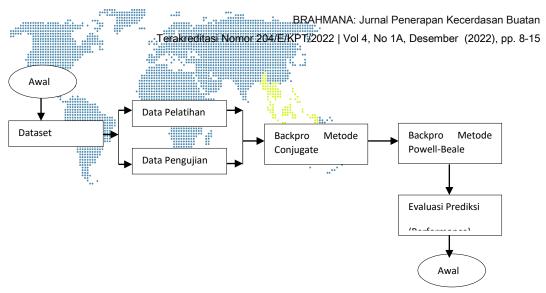
Gambar 1. Produksi rute pergerakan pesawat domestik


Untuk menerapkan model penjadwalan penerbangan pesawat yang optimal perlu dilakukan prediksi produksi rute pergerakan pesawat domestik. Solusi yang digunakan pada permasalahan ini adalah mengunakan machine learning. Salah satu algoritma prediski pada machine learning adalah neural networks. Algoritma yag digunakan adalah backprpagation[2][3][4] neural networks dengan meggunakan 2 metode yaitu conjugate gradient fletcher reeves[5] dan powell-beale[6][7][8]. Penulis melakukan komparasi dari dua metode dengan melihat nilai performance dari masing-masing metode pada saat pelatihan. Performance terbaik pada penelitian akan digunakan untuk melakukan prediksi produksi rute pergerakan pesawat domestik.

2. Metodologi Penelitian

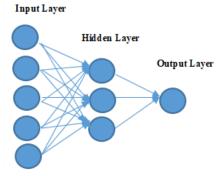
Penelitian dalam artikel ini dilakukan dalam dua tahap, yaitu tahap pengumpulan data dan tahap analisis data. Kegiatan pengumpulan data dengan pendekatan survey. Teknik pengumpulan data dipilih dari kuesioner dengan menggunakan Google Forms. Tautan yang didistribusikan disebarluaskan melalui berbagai media sosial dan dapat diakses oleh konsumen. Kajian ini juga membutuhkan berbagai referensi yang relevan, sehingga penulis mengumpulkan informasi dari kajian literatur, eksperimen, dan berbagai jurnal dan website. Dokumen yang dirujuk dalam penelitian ini adalah dokumen yang berisi informasi tentang sistem pendukung keputusan terkait pemilihan aplikasi belanja online terbaik.

2.1. Sumber Data


Data yang digunakan pada penelitian ini adalah data AirVav Indonesia berupa produksi rute harian pergerakan pesawat domestik harian tahun 2016 sampai dengan 2021. Berikut adalah data produksi rute harian pergerakan pesawat Indonesia yang disajikan menggunakan grafik.

Gambar 2. Grafik Produksi Rute Harian Pergerakan Pesawat Domestik Di Indonesia

2.2. Kerangka Kerja Penelitian


Dalam penyelesaian penelitian ini, penulis menyusun kerangka kerja penelitian sebagai berikut :

Gambar 3. Kerangka Kerja Penelitian

2.3. Perancangan Arsitektur

Arsitektur yang digunakan terdiri dari 1 blok input layer, 1 blok hidden layer dan 1 blok output layer. Berikut contoh arsitektur 5-3-1

Gambar 4. Arsitektur 5-3-1

3. Hasil Dan Pembahasan

3.1. Normalisasi Data

Rumus normalisasi yang digunakan

$$X^{1} = \frac{0.8(x-a)}{b-a} + 0.1 \tag{1}$$

Keterangan:

x' = data hasil normalisasi

x = data asli/data awal

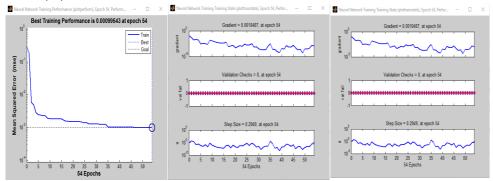
a = nilai maksimum data awal

b = nilai terkecil dari data awal

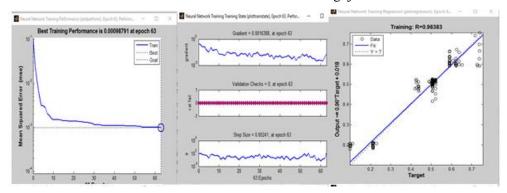
Hasil normalisasi data dapat dilihat pada tabel 1 :

Tabel 1. Normansasi Data							
No	X1	X2	X3	X4	X5	X6	X7
1	0.4362	0.5215	0.4362	0.5215	0.4362	0.5055	0.5215
2	0.4362	0.5055	0.5215	0.5055	0.5055	0.4362	0.5055
3	0.4362	0.4362	0.5215	0.5055	0.5055	0.4362	0.5055
4	0.5055	0.5055	0.5215	0.5055	0.5055	0.4362	0.5055
5	0.5055	0.4362	0.5215	0.4396	0.5055	0.4380	0.5055
6	0.5055	0.4380	0.5055	0.5055	0.5055	0.5055	0.4380
7	0.5055	0.4380	0.5055	0.4380	0.5055	0.5055	0.4380

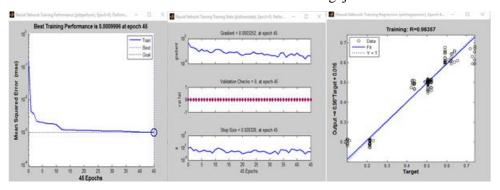
Tabel 1. Normalisasi Data


No	V1	X2		V 4	X5	X6	X7
. 8		0.4380		0.5055	0.4380	0.5055	0.5055
9	********	0.5055	0.4380	0.5055	0.5048	0.5055	0.5048
10	: 0.5055	0.5055	0.5055	***	₩Ø:5055	0.5055	0.5048
111	0.5055	0.5055	0.5048		0.5048	0.5055	0.5215
12	0.5055	0.5048	0.5215	2042222224	0.5215	0.5055	0.5215
13	0.5055	0.5215	0.5055	0.5215	0.5048	0.5055	0.5055
14	0.5016	0.5055	0.5055	0.5016	0.5055	0.5055	0.5016
15	0.5055	0.5016	0.5055	0.5016	0.5215	0.5016	0.5055
16	0.5215	0.5055	0.5215	0.5055	0.5215	0.5016	0.5215
17	0.5215	0.5035	0.5215	0.5215	0.5215	0.5055	0.5215
18	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055
19	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5103
20	0.5055	0.5055	0.5055	0.5103	0.5055	0.5103	0.5055
21	0.5055	0.5055	0.5103	0.5055	0.5055	0.5055	0.5055
22	0.5103	0.5055	0.5105	0.5103	0.5055	0.5055	0.5055
23	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055
24	0.5055	0.5035	0.5215	0.5055	0.5215	0.5215	0.5215
25	0.5215	0.5215	0.5055	0.5215	0.5055	0.5055	0.5215
26	0.5055	0.5215	0.5215	0.5215	0.5055	0.5215	0.5055
27	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055
28	0.5055	0.5055	0.5055	0.5055	0.5055	0.5215	0.5055
29	0.5055	0.5035	0.5055	0.5215	0.5215	0.5055	0.5215
30	0.5055	0.5215	0.5215	0.5055	0.5215	0.5215	0.5215
31	0.5215	0.5215	0.5055	0.5016	0.5055	0.5055	0.5016
32	0.5055	0.5055	0.5016	0.5055	0.5055	0.5071	0.5050
33	0.5071	0.5103	0.5055	0.5050	0.5071	0.5055	0.5050
34	0.5103	0.5071	0.5050	0.5055	0.5103	0.5055	0.5050
35	0.5215	0.5071	0.5050	0.5055	0.5050	0.5055	0.5055
36	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055
37	0.5055	0.5055	0.5055	0.5055	0.5215	0.5055	0.5055
38	0.5055	0.5215	0.5055	0.5055	0.5055	0.5215	0.5215
39	0.5055	0.5215	0.5215	0.5215	0.5215	0.5215	0.5215
40	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055	0.5055
41	0.5055	0.5055	0.5055	0.5055	0.5050	0.5215	0.5215
42	0.5215	0.5215	0.5215	0.5215	0.5050	0.5055	0.5215
43	0.5050	0.5215	0.5055	0.5050	0.5215	0.5055	0.5050
44	0.5055	0.5050	0.5055	0.5055	0.5215	0.5055	0.5055
45	0.5215	0.5055	0.5055	0.5215	0.5055	0.5055	0.5215
46	0.5055	0.5215	0.5215	0.5215	0.5055	0.5055	0.5215
47	0.5055	0.5055	0.5055	0.5215	0.5215	0.5055	0.5055
48	0.5215	0.5055	0.5215	0.5071	0.5215	0.5071	0.5103
49	0.5055	0.5103	0.5055	0.5055	0.5103	0.5055	0.5055
50	0.5103	0.5055	0.5055	0.5215	0.5055	0.5071	0.5104
51	0.5055	0.5231	0.5104	0.5055	0.5055	0.5104	0.5215
52	0.5057	0.5055	0.5055	0.5055	0.5215	0.5103	0.5055
53	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912
	••						
311	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912
312	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912	0.5912

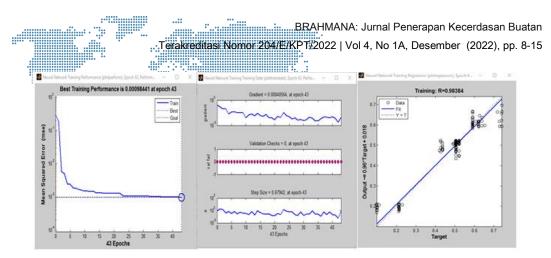
Data pelatihan dan pengujian terdiri dari 1190 data, dalam 1 tahun diambil 52 minggu yang terdiri dari x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , dan x_7 . Data dibagi menjadi dua bagian, yaitu data

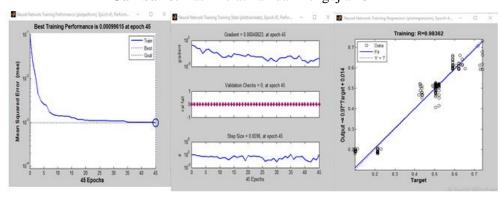

pelatihan dan data pengujian. Data pelatihan terdiri dari 5 input yaitu x_1, x_2, x_3, x_4, x_5 dan target x_6 ; Sedangkan pengujian terdiri dari 5 input yaitu x_2, x_3, x_4, x_5, x_6 dan target x_7 .

3.2. Pelatihan dan pengujian dengan metode Fradient Fletcher Reeves

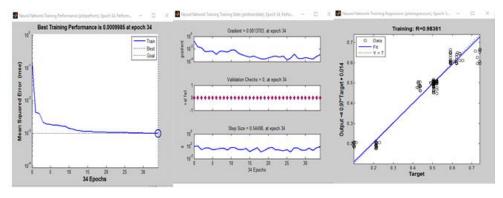

Data pelatihan dan pengujian prediksi produksi rute pergerakan pesawat domestik menggunakan aplikasi mathlab 2011a dengan algortima backpropagation metode conjugate gradient fletcher reeves. Hasil pelatihan dan pengujian dapat dilihat pada Gambar 5, 6, dan 7.

Gambar 5. Hasil Pelatihan dan Pengujian 5-2-1


Gambar 6. Hasil Pelatihan dan Pengujian 5-3-1

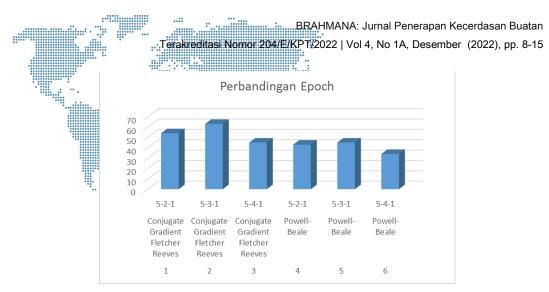

Gambar 7. Hasil Pelatihan dan Pengujian 5-4-1

3.3. Pelatihan dan pengujian dengan metode powel Beale


Data pelatihan dan pengujian prediksi produksi rute pergerakan pesawat domestik menggunakan aplikasi mathlab 2011a dengan algoritma backpropagation metode Powell-Beale Hasil pelatihan dan pengujian dapat dilihat pada Gambar 8, 9 dan 10.

Gambar 8. Hasil Pelatihan dan Pengujian 5-2-1

Gambar 9. Hasil Pelatihan dan Pengujian 5-3-1

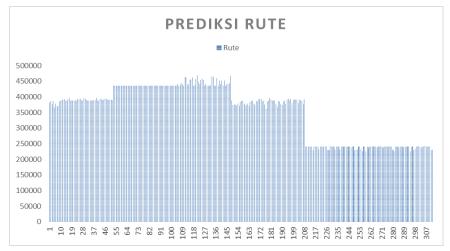


Gambar 10. Hasil Pelatihan dan Pengujian 5-3-1

3.4. Perbandingan Hasil Pelatuhan dan Pengujian dengan Metode Conjugate Gradient Fletcher Reeves dan Powerbeale

Tabel 2. Perbandingan Kedua Metode

No	Metode	Arsitektur	Epoch	Performance Pengujian
1	Conjugate Gradient Fletcher Reeves	05/02/2001	54	0.0011
2	Conjugate Gradient Fletcher Reeves	05/03/2001	63	0.0013
3	Conjugate Gradient Fletcher Reeves	05/04/2001	45	0.0011
4	Powell-Beale	05/02/2001	43	0.0011
5	Powell-Beale	05/03/2001	45	0.0012
6	Powell-Beale	05/04/2001	34	0.0010


Gambar 11. Perbandingan Epoch

Gambar 12. Perbandingan Performance Pengujian

3.5. Hasil Pengujian Arsitektur Terbaik

Setelah penulis mendapat arsitektur terbaik dari 2 metode yang ada dengan 3 jenis arsitektur, dilanjutkan dengan prediksi produksi rute harian pergerakan pesawat domestik. Hasil prediksi produksi rute harian pergerakan peswat domestik dapat dilihat pada Gambar 13:

Gambar 13. Prediksi Produksi Rute Pergerakan Pesawat Domestik

Hasil prediksi produksi rute harian pergerakan pesawat domestik di denormalisasikan dengan rumus dibawah ini :

$$F_{i} = \left[\frac{((F_{i}') + 0.1)}{0.8}\right] + x \left(\max(X) - \min(X)\right) + \min(X) + \min(X)$$
 (2)

Fi = Nilai prediksi dengan range nilai asli

 (F'_i) = Nilai prediksi dari hasil data yang dinormalisasi

X = Data aktual

4. Kesimpulan

Berdasarkan hasil dan pembahasan yang telah dijelaskan diatas, maka dapat diambil kesimpulan bahwa metode backpropagation metode conjugate gradient fletcher reeves dan powel-beae dapat digunakan untuk memprediksi prediksi produksi rute harian pergerakan pesawat domestik sebagai salah satu upaya membantu pihak maskapai dalam memberikan informasi tentang produksi rute haraian mendatang , agar pihak maskapai dapat membuat model penjadwalan rute pesawat yang optimal. Hasil komparasi dari 2 metode menunjukkan metode powell-beale memiliki performance terbaik dengan arsitektur 5-4-1 yaitu 0,0010 dengan epoch 34. Rata-rata produksi rute harian pergerakan pesawat domestik adalah 353737. Saran dari penelitian ini adalah perlu dilakukan pelatihan dan pengujian prediksi rute harian pergerakan pesawat domestik dengan algoritma lain untuk menghasilkan performance yang lebih baik sehingga hasil prediksi lebih akurat.

Daftar Pustaka

- A. Nurrahman, "Faktor-Faktor yang Mempengaruhi Penutupan Rute Penerbangan Batam-Rengat dengan karakteristik moda transportasi udara tersebut. Disisi lain moda transportasi udara Rute Batam Rengat merupakan salah satu rute perintis yang mendapatkan 2018. Rute perinti," vol. 3, no. 1, pp. 14–27, 2022.
- [2] A. Revi, S. Solikhun, and I. Parlina, "Jaringan Syaraf Tiruan Dalam Memprediksi Tingkat Pertumbuhan Industri Mikro Dan Kecil Berdasarkan Provinsi," *Teknika*, vol. 7, no. 2, pp. 129–137, 2018.
- [3] D. Monika, A. Ahmad, S. Wardani, and Solikhun, "Model Jaringan Syaraf Tiruan Dalam Memprediksi Ketersediaan Cabai Berdasarkan Provinsi," *Teknika*, vol. 8, no. 1, pp. 17–24, 2019.
- [4] Z. M. Siallagan, "Implementation of Backpropagation ANN in Predicting Long Bean Crop Production in Sumatra Island Province," vol. 11, no. 2, pp. 78–84, 2022.
- [5] H. F. Tampubolon and S. Solikhun, "Predicting the Amount of Pineapple Production in Sumatra Using the Fletcher-Reeves Algorithm," *Int. J. Mech. Comput. Manuf. Res.*, vol. 11, no. 2, pp. 60–68, 2022.
- [6] P. Anggara, "Perbandingan Model Jaringan Syaraf Tiruan Dengan Algoritma Levenberg-Marquadt Dan Powell-Beale Conjugate Gradient Pada Kecepatan Angin Rata-Rata Di Kota Semarang," vol. 8, no. 2, 2020.
- [7] N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, "Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm," vol. 5, no. 158, pp. 624–632, 2022.
- [8] M. Mbp and P. Beale, "Analisis reduksi dimensi pada klasifikasi microarray menggunakan mbp powell beale," vol. 7, no. 1, pp. 17–24, 2018.