Sentiment Analysis Of Public Comments On Quick Response Code Indonesian Standard (Qris) On Twitter Social Media Using The Naïve Bayes Classifier Method

Muhammad Fahri(1*), Rakhmat Kurniawan(2),

(1) Universitas Islam Negeri Sumatera Utara, Indonesia
(2) Universitas Islam Negeri Sumatera Utara, Indonesia
(*) Corresponding Author

Abstract


Nowadays, technological developments have an inevitable impact on various aspects of human life. One real example of the development of E-Wallet which is very easy to access on a smartphone. However, the large variety of e-wallets available can be confusing for users because they need to download and manage many applications on their cellphones, therefore Bank Indonesia has found a solution for faster retail transactions, namely with a QR code or known as a Quick Response Code Indonesian Standard (QRIS). The use of QRIS has become a positive trend in the business and consumer world, this is due to the benefits of more efficient non-cash transaction processing. Even though QRIS is considered easy to use and brings benefits to many parties, not everyone responds positively. Some people also have negative comments regarding the QRIS payment system. To see their various views and opinions regarding the implementation of QRIS, researchers took one of the social media platforms, namely Twitter. Therefore, a public sentiment analysis was carried out to understand how the public responded to QRIS, whether it included positive or negative sentiment? In order to achieve this goal, researchers use the Naïve Bayes Classifier method, where this method analyzes a problem with a good level of accuracy and can help in evaluating concerns that need to be corrected, in order to obtain appropriate and accurate comparison results of negative and positive sentiment in analyzing sentiment. public comments on QRIS on Twitter social media using the Naïve Bayes Classifier method

Full Text:

PDF

References


D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, (2022), doi: 10.23960/jitet.v10i1.2262.

W. W. Wahyu Novianti E, “Analisis Sentimen Pengguna Twitter terhadap Program Kartu Prakerja di Tengah,” J. Sains dan senin ITS, vol. 11, no. 1, pp. 136–142, (2022).

Arta Setiawan W and Luh Putu Mahyuni, “Qris Di Mata Umkm Eksplorasi Persepsi Dan Intensi Umkm Menggunakan Qris,” E-Jurnal Ekon. dan Bisnis Univ. Udayana, vol. 9, no. 10, pp. 921–946, (2020).

Y. Yuliana, A. Arwin, W. Weny, C. Lo, and J. Kuan, “Analisis Niat Konsumen dalam menggunakan QRIS Dengan Pendekatan Theory of Planned Behavior (TPB),” J. E-Bis, vol. 6, no. 2, pp. 680–690, (2022), doi: 10.37339/e-bis.v6i2.1032.

N. Rahmi, K. Kurniati, and H. Kusmiati, “Analisis Intention to Use dalam Penggunaan QRIS Sebagai Digital Payment bagi Mahasiswa,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 3, no. 2, pp. 77–86, (2023), doi: 10.53514/jco.v3i2.413.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, (2020), doi: 10.30864/jsi.v15i1.332.

E. M. O. N. Taofik Krisdiyanto, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 7, no. 1, pp. 32–37, (2021).

A. I. Kurniawan Daniel, HD Purnomo, “ANALISIS SENTIMEN PRODUK HERBAL JAMU PADA MEDIA SOSIAL INSTAGRAM,” Sist. Inf., vol. 15, no. 2, pp. 3202–3210, (2023).

B. Hirwono, A. Hermawan, and D. Avianto, “Implementasi Metode Naïve Bayes untuk Klasifikasi Penderita Penyakit Jantung,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 3, pp. 450–457, (2023), doi: 10.35870/jtik.v7i3.910.

R. N. Qonita and F. N. Hasan., “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1136–1144, (2023), doi: 10.47065/josh.v4i4.3803.

F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 73–82, (2023), doi: 10.34010/komputa.v12i1.9418.

S. F. Fattah and Purnawansyah, “Analisis sentimen terhadap Body Shaming pada Twitter menggunakan Metode Naïve Bayes Classifier,” Indones. J. Data Sci., vol. 3, no. 2, pp. 61–71, (2022), doi: 10.56705/ijodas.v3i2.46.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, (2020), doi: 10.32664/smatika.v10i02.455.

Irvandi, B. Irawan, and O. Nurdiawan, “Naive Bayes Dan Wordcloud Untuk Analisis Sentimen Wisata Halal Pulau Lombok,” INFOTECH J., vol. 9, no. 1, pp. 236–242, (2023), doi: 10.31949/infotech.v9i1.5322.

E. Junianto and R. Rachman, “Penerapan Metode Naïve Bayes Classifier Untuk Mendeteksi Emosi Pada Komentar Media Sosial,” J. Responsif Ris. Sains dan Inform., vol. 2, no. 1, pp. 1–8, (2020), doi: 10.51977/jti.v2i1.156.

M. Muthmainnah, Savira Noerroslina, Rama Reinaldo Aran, and Farida Hariyati, “Analisis Komentar Negatif Kelangkaan Minyak Goreng pada Akun Instagram @megawatisoekarnoputri.id,” MUKASI J. Ilmu Komun., vol. 2, no. 1, pp. 86–97, (2023), doi: 10.54259/mukasi.v2i1.1376.

E. G. M. Nainggolan, B. T. F. Silalahi, and E. M. Sinaga, “Analisis Kepuasan Gen Z Dalam Menggunakan QRIS Di Kota Pematangsiantar,” Manaj. J. Ekon., vol. 4, no. 1, pp. 24–32, (2022), doi: 10.36985/manajemen.v4i1.351.

M. F. Naufal and S. F. Kusuma, “Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, p. 44, (2022), doi: 10.26418/jp.v8i1.49951.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, (2022), doi: 10.31294/jtk.v4i2.

M. Rafi Nahjan, Nono Heryana, and Apriade Voutama, “Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 101–104, (2023), doi: 10.36040/jati.v7i1.6094.

I. Tri Julianto, D. Kurniadi, Y. Septiana, and A. Sutedi, “Alternative Text Pre-Processing using Chat GPT Open AI,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 1, pp. 67–77, (2023), doi: 10.23887/janapati.v12i1.59746.

K. Yan, D. Arisandi, and T. Tony, “Analisis Sentimen Komentar Netizen Twitter Terhadap Kesehatan Mental Masyarakat Indonesia,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, (2022), doi: 10.24912/jiksi.v10i1.17865.




DOI: https://doi.org/10.30645/brahmana.v5i2.398

DOI (PDF): https://doi.org/10.30645/brahmana.v5i2.398.g394

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: