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Abstract 
In this study, we present a comprehensive approach to address a critical challenge in 

environmental science: the accurate prediction of dissolved oxygen (DO) levels in river 

ecosystems. Leveraging advanced machine learning techniques, particularly Variational 

Autoencoders (VAEs), our research aims to overcome the limitations posed by sparse and 

incomplete environmental datasets. We meticulously curated a dataset from multiple 

water monitoring stations, capturing key indicators such as DO, ammonium ions, nitrites, 

nitrates, and biochemical oxygen demand. Following data standardization and quality 

assessment, we implemented a RandomForestRegressor to ascertain feature importance, 

utilizing GridSearchCV and RandomizedSearchCV for model optimization. This allowed 

for precise feature selection to inform the predictive model. Anomaly detection was 

performed using One-Class SVM and Isolation Forest methodologies, essential for 

purifying the dataset by removing outliers. Subsequently, VAEs were applied to augment 

the data, synthesizing new data points that were statistically coherent with the original 

set, thus enriching the dataset and potentially unveiling concealed patterns. The 

augmented data's impact was evaluated through a RandomForestRegressor model, 

comparing RMSE scores before and after data augmentation, revealing a notable 

improvement in predictive accuracy with the lowest RMSE observed for the model 

utilizing VAE-generated data. This underscores the VAE's value in enhancing the model's 

performance, indicating that the synthetic data provided additional variability and 

complexity that aided the model's learning process. Our findings indicate that integrating 

sophisticated data augmentation techniques like VAEs can significantly enhance the 

quality of environmental datasets and the accuracy of predictive models.  
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1. Introduction 
The pursuit of precise water quality assessment in river ecosystems represents a 

longstanding challenge in environmental science [1]–[3]. Traditional methods have 

primarily focused on direct measurements and statistical modeling to predict key 

indicators, notably dissolved oxygen (DO) levels [4]–[6]. While these methods are 

foundational, they face challenges in addressing the sparse and often incomplete nature of 

environmental datasets, which are characterized by complex, non-linear ecological 

interactions [7]–[9]. The evolution of environmental monitoring has seen the integration 

of advanced statistical models and machine learning techniques, aiming to enhance the 

accuracy of predictions [10]–[12]. However, a significant challenge remains: the 

development of robust predictive models is often hindered by the intrinsic limitations of 

available data [13]–[15]. Addressing this pivotal gap, our study introduces an innovative 

application of Variational Autoencoders (VAEs) for data generation, representing a 

paradigm shift in the approach to environmental data analysis. VAEs uniquely combine 

deep learning with Bayesian inference to synthesize new data points that maintain 

statistical consistency with the original dataset [16]–[18]. This is particularly 
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advantageous in environmental science, where the complexity of ecosystems often 

surpasses the scope of conventional data collection methods [19]. By employing VAEs, 

our study aims to overcome the constraints of data scarcity and quality, enriching datasets 

and revealing latent patterns that might be obscured in smaller data samples. 

Our research meticulously develops a VAE architecture specifically designed for 

environmental data, optimizing the model through advanced hyperparameter tuning and 

validation methods like GridSearchCV and RandomizedSearchCV. The VAE's encoder 

component efficiently compresses high-dimensional input data into a compact latent 

space, capturing key features essential for predicting DO levels. Subsequently, the 

decoder component reconstructs the input data from this latent representation, generating 

new, synthetic data points that reflect the intricate relationships found in the original 

dataset. A cornerstone of our study is the thorough evaluation of the synthetic data 

produced by the VAE. Using a RandomForestRegressor model, we conduct a detailed 

comparison of the predictive performance before and after data augmentation, with Root 

Mean Squared Error (RMSE) serving as the primary metric for accuracy assessment. 

Additionally, we implement cosine similarity measures to evaluate the alignment between 

the original and generated datasets, ensuring that the synthetic data accurately reflects the 

environmental variables' true characteristics. 

This research marks a contribution to environmental data science, underscoring the 

potential of VAEs to transform the field of ecological modeling and prediction. By 

enhancing the depth and reliability of datasets, our approach holds promise for improving 

river ecosystem management, offering a pathway for more informed and effective 

environmental stewardship. Structured to offer a thorough overview of the methodology, 

the paper progresses to a detailed presentation of the results derived from the applied 

VAE techniques for data generation. The subsequent analysis delves into the implications 

of these findings for environmental monitoring and predictive modeling. The conclusion 

synthesizes the key discoveries and proposes future research directions. This systematic 

approach ensures that the paper comprehensively addresses the study's aims while 

contributing valuable insights to the field of environmental monitoring. 

 

2. Reseach Methodology 
Our study adopts a multifaceted methodology to enhance the predictive accuracy of 

dissolved oxygen (DO) levels in river ecosystems, a crucial parameter in assessing water 

quality. This approach combines advanced data preprocessing, feature analysis, anomaly 

detection, and state-of-the-art machine learning techniques, including the novel 

application of Variational Autoencoders (VAEs) for data augmentation. The dataset has 

five indicators that are measured at 8 stations of the state water monitoring system. 

Indicators of river water quality in this dataset are: 

a) O2(i): Dissolved oxygen (O2) is measured in mgO2/cub. dm (i.e. milligrams of 

oxygen (O2) in the cubic decimeter). 

b) NH4(i): Ammonium ions (NH4) concentration is measured in mg/cub. dm (i.e. 

milligrams in the cubic decimeter). 

c) NO2(i): Nitrite ions (NO2) concentration is measured in mg/cub. dm (i.e. 

milligrams in the cubic decimeter). 

d) NO3(i): Nitrate ions (NO3) concentration is measured in mg/cub. dm (i.e. 

milligrams in the cubic decimeter). 

e) BOD5(i): Biochemical oxygen demand, which is determined in 5 days ("BOD5" 

or "BOD"). BOD5 is measured in MgO/cub. dm (i.e. milligrams of oxygen in 

cubic decimeters). 
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2.1. Data Collection and Preparation 

We utilize three primary datasets: 'train.csv' for training, 'test.csv' for validation, and 

'sample_submission.csv' as a template for outputs. Each dataset undergoes a 

standardization process where columns are renamed for consistency, thereby facilitating 

easier data manipulation and analysis. Furthermore, we utilize tools such as PrettyTable 

and missingno (msno), we conduct an exhaustive assessment of data quality. This 

involves analyzing data types, identifying missing values, and determining the percentage 

of data missing in each column. This rigorous analysis allows us to understand the extent 

of data completeness and plan appropriate preprocessing steps. 
 

2.2. Feature Importance and Selection 

We employ a RandomForestRegressor to evaluate the importance of various features 

in predicting DO levels. This model is optimized using hyperparameter tuning methods 

such as GridSearchCV and RandomizedSearchCV. The performance is evaluated through 

KFold cross-validation, focusing on metrics like Mean Absolute Error (MAE) to assess 

the model's predictive power. In addition, The most influential features are identified and 

iteratively added to the model. At each step, the model's performance is assessed using the 

Root Mean Squared Error (RMSE). This process helps in pinpointing the optimal set of 

features that contribute significantly to prediction accuracy. 

 

2.3. Anomaly Detection and Data Augmentation 

Methods like One-Class SVM and Isolation Forest are deployed to detect and remove 

outliers from the dataset. This step is crucial as outliers can significantly skew model 

predictions and affect the overall data quality.  We design a VAE architecture specifically 

tailored for environmental data. The VAE consists of an encoder network, which 

compresses high-dimensional data into a latent space, and a decoder network, which 

reconstructs data from this latent representation. The model's loss function includes both 

the reconstruction loss and KL divergence, ensuring that the synthetic data generated is 

realistic and representative of the original dataset. Furthermore, the synthetic data 

produced by the VAE is carefully integrated with the original dataset. We then employ a 

RandomForestRegressor to evaluate the augmented dataset's quality. The RMSE metric is 

used to quantify the improvement in predictive accuracy. Additionally, cosine similarity 

analysis ensures that the synthetic data closely mirrors the characteristics of the original 

dataset. 
 

2.4. Model Training and Evaluation 

The effectiveness of data augmentation is assessed by comparing the models' 

performance, pre- and post-augmentation. This comparison, focusing on RMSE, helps 

determine the impact of VAE-generated data on improving model accuracy. Furthermore, 

the final model selection is based on a combination of accuracy and generalization. The 

model demonstrating the highest predictive accuracy with the augmented dataset is 

chosen as the primary tool for predicting DO levels in river ecosystems. 

 

3. Results and Discussion 
As presented on table 1, the results indicate that data augmentation using VAEs has a 

positive impact on the predictive accuracy of the Random Forest model, as evidenced by 

the lowest RMSE score. This suggests that the additional synthetic data provided by the 

VAE can enhance the model's training process, potentially by introducing a broader 

variety of examples that help the model generalize better to unseen data. The RMSE 

values across different methods highlight the importance of a comprehensive approach 

that includes both anomaly detection and data augmentation in environmental data 

analysis. The use of sophisticated algorithms like VAEs in conjunction with robust 



KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) 

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 5, No. 1, Januari (2024), pp. 189-194 
    

 

192 

predictive models like Random Forest can lead to more accurate environmental 

monitoring tools, which are crucial for effective management and conservation efforts. 

The VAE has an RMSE of 1.141, which indicates a moderate level of prediction error. 

As a generative model, the VAE's primary function in this context is likely data 

augmentation. Its performance suggests that the synthetic data it generated was 

reasonably effective in improving the model's accuracy. LOF, an algorithm used for 

identifying outliers in data, shows a slightly higher RMSE of 1.152 compared to the VAE. 

This could imply that while LOF is effective in detecting anomalies, the method might 

either remove some useful information along with the outliers or not detect all the 

anomalies, which slightly decreases the predictive accuracy. 

With an RMSE of 1.284, PCA, a dimensionality reduction technique, appears to be the 

least effective among the methods listed. This could be due to PCA's tendency to preserve 

variance as opposed to directly improving predictive accuracy. It suggests that the 

principal components retained may not capture all the variables critical for predicting DO 

levels. The standalone Random Forest model yields an RMSE of 1.142, which is slightly 

better than the VAE and LOF but not by a large margin. This indicates that the Random 

Forest model on its own is relatively effective in capturing the patterns in the data 

necessary for making accurate predictions. The Random Forest model using data 

augmented by the VAE shows the lowest RMSE of 1.068. This is a significant 

improvement over the standalone Random Forest model and suggests that the synthetic 

data added value to the model, helping to capture more of the underlying data distribution 

and improve the accuracy of DO level predictions. 

 

Table 1. Comparison Result 
Metric/Method VAE Local 

Outlier 

Factor 

PCA Random Forest 

Regressor  
Random Forest 

Regressor with 

generated data 

from VAE 
RMSE 1.141 1.152 1.284 1.142 1.068 

 

4. Conclusion 
In conclusion, our investigation into the enhancement of predictive models for river 

water quality, specifically dissolved oxygen (DO) levels, has yielded insightful findings. 

We embarked on this research endeavor to address the critical gap in environmental data 

science—particularly the limitations posed by sparse and incomplete datasets—and our 

results underscore the efficacy of employing advanced machine learning techniques for 

this purpose. Throughout the study, we adhered to a structured methodology that 

encompassed data preprocessing, feature importance analysis, anomaly detection, and the 

application of machine learning models. Notably, the integration of Variational 

Autoencoders (VAEs) for data augmentation stood out as a pivotal innovation, enhancing 

our dataset and revealing latent patterns that traditional methods might overlook. 

The results from our methodical approach were quantified using the Root Mean 

Squared Error (RMSE) as the primary metric for accuracy. The application of VAEs for 

generating synthetic data proved to be particularly effective, as evidenced by the 

improved RMSE scores when this data was used in conjunction with a RandomForest 

Regressor model. The VAE-augmented model outperformed other methods, including 

PCA and Local Outlier Factor, and even the standalone RandomForest model, 

emphasizing the value of VAE-generated data in enhancing model accuracy. Our research 

has not only demonstrated the potential of VAEs in creating robust predictive models for 

environmental monitoring but also set a benchmark for future studies in this field.  

By improving the depth and quality of environmental datasets, we contribute to the 

advancement of ecological conservation efforts and the development of effective river 

ecosystem management strategies. The implications of our findings are significant, paving 
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the way for the adoption of sophisticated data augmentation techniques in environmental 

data analysis and beyond.Looking ahead, we advocate for continued exploration of VAEs 

and other generative models, foreseeing their broader application across various domains 

of environmental science. The integration of such models with an array of machine 

learning algorithms can potentially lead to groundbreaking advancements in predictive 

accuracy, model robustness, and ultimately, the sustainability of natural ecosystems. 
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