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Abstract 
In this study, we propose a comprehensive comparison of deep learning models for 

predicting the status of fan actuators in an IoT-enabled smart greenhouse environment. 

The dataset, consisting of 37,923 observations, captures environmental variables such as 

temperature, humidity, and soil nutrient levels, alongside actuator statuses. The aim is to 

accurately predict the binary status of the fan actuator (on or off) based on these 

environmental conditions. To address the challenge of class imbalance in the dataset, we 

apply the Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic 

samples of the minority class, ensuring a balanced distribution for training. Three deep 

learning architectures Multi-Layer Perceptron (MLP), Convolutional Neural Network 

(CNN), and Long Short-Term Memory (LSTM) are implemented and evaluated using 10-

fold cross-validation. The performance of each model is assessed using accuracy, 

precision, recall, and F1 score metrics. Results indicate that all models demonstrate 

strong predictive capabilities, with the LSTM excelling in capturing temporal 

dependencies, the CNN effectively extracting spatial patterns, and the MLP achieving 

overall high accuracy in structured data. The findings of this study provide valuable 

insights into the strengths and weaknesses of these models for actuator status prediction, 

which can guide future developments in smart greenhouse automation systems. 

 

Keywords: Deep learning models, IoT-enabled smart greenhouse, Fan actuator 

prediction, Class imbalance, Temporal dependencies. 

 

1. Introduction 
The integration of the Internet of Things (IoT) with agricultural practices has 

revolutionized the way farming is conducted, leading to innovations such as smart 

greenhouses [1]–[3]. These technologically advanced systems enable precise monitoring 

and automated control of environmental conditions, which are vital for crop health and 

yield optimization [4]. Smart greenhouses rely on a network of sensors and actuators to 

gather real-time data on variables such as temperature, humidity, soil nutrients, and water 

levels [5]. The actuators, including fans, water pumps, and irrigation systems, respond to 

changing conditions, thereby maintaining an ideal environment for plant growth [6]. The 

use of such automated systems helps reduce human intervention, minimizes resource 

wastage, and maximizes crop efficiency, making it a critical solution for modern 

agriculture [7]. As IoT-enabled systems become more prevalent in agriculture, the ability 

to predict actuator behavior is crucial for efficient operation [8]. Predicting when 

actuators like fans and pumps should turn on or off is essential for maintaining optimal 

greenhouse conditions while reducing energy consumption [9]. The problem, however, is 

not trivial. Smart greenhouse systems are complex and dynamic, with multiple factors 

influencing the need for actuator intervention [10]. Current prediction models used for 

actuator control often lack the precision required to handle the intricacies of changing 

environmental conditions, leading to inefficiencies in resource use and suboptimal crop 

growth environments [11]. This underscores the need for more sophisticated predictive 

models that can accurately forecast actuator behavior based on environmental inputs. 
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The growing demand for sustainable agriculture makes the development of efficient 

smart greenhouse systems an urgent need. IoT-based solutions have been increasingly 

adopted in agriculture for tasks like environmental monitoring and automatic control [12]. 

These systems allow for real-time adjustments to environmental parameters, enhancing 

precision farming practices [13]. However, while several studies have explored the use of 

machine learning (ML) techniques for analyzing environmental data, most research 

focuses on the basic automation of systems rather than the predictive capabilities of 

actuators [14]. Existing research often employs classical machine learning models such as 

Logistic Regression, Decision Trees, or Support Vector Machines (SVM) to predict the 

status of greenhouse actuators. These models, while useful in simpler contexts, struggle to 

cope with the complex, nonlinear relationships between environmental variables and 

actuator status [15]. Moreover, such models frequently overlook temporal dependencies 

and are limited by their inability to generalize well to new, unseen conditions [16]. 

One of the major challenges in actuator prediction is the class imbalance in the dataset. 

Actuator statuses such as "Fan ON" or "Fan OFF" typically occur with varying 

frequencies, making the data heavily skewed. For example, in many cases, the fan may 

remain off for extended periods, with only brief instances of being turned on, which 

results in an imbalance between the "ON" and "OFF" classes [17]. This imbalance can 

significantly affect the performance of traditional machine learning models, causing them 

to be biased towards the majority class [18]. While oversampling techniques such as the 

Synthetic Minority Oversampling Technique (SMOTE) have been employed in prior 

research to balance the dataset, these solutions are often applied with simpler machine 

learning models that do not fully leverage the data’s complexity [19]. Furthermore, 

existing research often underutilizes deep learning models, which have demonstrated 

remarkable success in other domains, such as image recognition, natural language 

processing, and time-series analysis [20]. Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks, for instance, are designed to capture spatial 

and temporal dependencies, making them potentially more effective in handling complex 

and time-dependent environmental data from smart greenhouses [21]. CNNs, with their 

ability to extract features through convolutional operations, are well-suited to detect 

intricate patterns in data, while LSTM networks are effective at capturing temporal 

sequences and dependencies, which are essential for predicting actuator statuses that 

depend on time-varying environmental factors [22]. Despite these advantages, there is a 

notable gap in literature when it comes to applying deep learning techniques to smart 

greenhouse systems, particularly for actuator prediction [23]. 

The goal of our research is to address these challenges by developing advanced deep 

learning models that can accurately predict the status of fan actuators in a smart 

greenhouse environment. Our study employs several state-of-the-art machine learning and 

deep learning models, including Multi-Layer Perceptron (MLP), Convolutional Neural 

Networks (CNN), and Long Short-Term Memory networks (LSTM), to capture the 

nonlinear relationships and temporal dependencies inherent in the greenhouse data. We 

leverage SMOTE to address the class imbalance issue, ensuring that our models are 

trained on balanced datasets, which can lead to more accurate and reliable predictions. A 

key contribution of our research is the application of CNN and LSTM models to this 

domain, as they offer significant advantages over traditional models in terms of capturing 

complex patterns and temporal dynamics. By integrating these models, we demonstrate 

that deep learning architectures are better equipped to predict actuator statuses, 

outperforming classical machine learning approaches. Specifically, CNNs can efficiently 

process the environmental data and extract meaningful features, while LSTMs can model 

the sequential nature of the data, improving the prediction accuracy for time-dependent 

variables like temperature and humidity. 
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Another major contribution lies in our preprocessing pipeline. We introduce an 

enhanced data preprocessing strategy that includes imputation of missing values, feature 

scaling, and the transformation of the datetime feature into relevant time-based attributes 

(such as hour and minute). This preprocessing step ensures that the models receive clean, 

structured data, thereby improving their performance. Furthermore, by simulating real-

world scenarios where actuator data might be imbalanced or incomplete, our approach 

offers a more robust and applicable solution for smart greenhouse management. This 

research not only advances the field of smart greenhouse systems but also provides 

insights into the application of deep learning in IoT environments. Our findings could 

significantly enhance the precision of smart greenhouses, leading to better resource 

management, reduced operational costs, and improved crop yields. The hybrid use of 

CNN and LSTM models introduces a novel approach for handling the specific challenges 

of smart greenhouse data, paving the way for future research in this area. 

The remainder of this paper is organized as follows: Section 2 reviews the related 

literature, focusing on previous research efforts in predictive modeling for smart 

greenhouses and actuator control. Section 3 describes the materials and methods, detailing 

the dataset, preprocessing techniques, and the machine learning models employed in the 

study. Section 4 presents experimental results, including a comparison of different models 

in terms of accuracy, precision, recall, and F1 score. Finally, Section 5 discusses the 

implications of the findings, identifies limitations of the study, and outlines future 

directions for research. 

 

2. Research Methodology 
The use of deep learning models in smart greenhouse systems has become an 

important area of study, particularly for predictive tasks related to actuator control. 

Actuators such as fans, water pumps, and irrigation systems play a key role in 

maintaining an optimal environment for plant growth by automatically adjusting in 

response to changing conditions. However, accurate and reliable prediction of 

actuator statuses is crucial for improving energy efficiency and reducing 

unnecessary resource usage. This section reviews previous research efforts focusing 

on the application and comparison of deep learning models in smart greenhouses, 

specifically for actuator control. 

 

2.1. Deep Learning Models for Actuator Control 

Deep learning has gained significant traction in predictive modeling due to its 

ability to capture complex patterns and relationships in large datasets. In the cont ext 

of smart greenhouses, deep learning models such as Convolutional Neural Networks 

(CNNs), Long Short-Term Memory networks (LSTMs), and hybrid models have 

been explored for their predictive capabilities [24]. These models are particularly 

suited for environments where variables such as temperature, humidity, and soil 

nutrient levels exhibit nonlinear dependencies and temporal variations, which affect 

the decision-making process for actuator control. [25] implemented a CNN-based 

model to predict the status of irrigation pumps and fans in a smart greenhouse. The 

model processed environmental data such as temperature, humidity, and soil 

moisture, leveraging the CNN’s ability to extract meaningful spatial features from 

the data. Their results showed that CNNs outperformed traditional machine learning 

models like Support Vector Machines (SVM) and Decision Trees, especially when 

dealing with high-dimensional data. However, their study did not consider the 

temporal dependencies of environmental variables, which may limit the model’s 

ability to predict long-term actuator behavior. 

In contrast, [26] applied an LSTM network for predicting the statuses of multiple 

actuators, including fans and irrigation systems. The LSTM model, which is 
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designed to capture long-term temporal dependencies in sequential data, proved 

highly effective in modeling the dynamic nature of the greenhouse environment  

[27]. Their results demonstrated superior predictive accuracy compared to CNNs 

and traditional machine learning models, particularly for time-dependent variables 

like temperature fluctuations [28]. However, their research primarily focused on a 

single actuator at a time, without exploring the interdependencies between multiple 

actuators or comparing different deep learning architectures side by side.  Several 

studies have examined hybrid approaches that combine CNNs and LSTMs to 

address the limitations of each model type. [29] proposed a hybrid deep learning 

model that integrates CNNs for spatial feature extraction and LSTMs for modeling 

temporal dependencies. Their approach was applied to a dataset containing 

environmental measurements from a smart greenhouse, and the hybrid model was 

used to predict the activation of both fans and irrigation systems simultaneously. 

This hybrid architecture achieved higher accuracy than standalone CNN or LSTM 

models by leveraging the strengths of both model types. However, there is still 

limited research comparing hybrid models with other deep learning models, such as 

GRUs (Gated Recurrent Units), in the context of smart greenhouse actuator control.  

 

2.2. Comparison of Deep Learning Architectures 

Despite the growing interest in applying deep learning models to smart 

greenhouses, relatively few studies have conducted a comprehensive comparison of 

different deep learning architectures for actuator control. Most studies tend to focus 

on individual models or hybrid approaches, without fully exploring how each model 

performs across different metrics, such as accuracy, precision, recall, and F1-score. 

This gap in literature highlights the need for comparative studies to better 

understand which model types are most suitable for predicting actuator behavior in 

complex, dynamic environments. In a related study, (Morales-Garc’ia et al., 2024) 

compared the performance of CNNs and LSTMs for predicting water pump 

activations in a smart greenhouse. The study found that while LSTMs generally 

performed better on sequential data due to their ability to capture temporal 

dependencies, CNNs excelled when it came to extracting features from spatially 

distributed data (e.g., temperature and soil nutrient levels across different locations 

in the greenhouse). However, the research lacked an in-depth comparison involving 

additional deep learning models such as GRUs, which could offer competitive 

performance by addressing some of the limitations of LSTMs, such as long training 

times and vanishing gradient issues. 

[31] conducted a comparative analysis of CNNs, LSTMs, and GRUs for 

predicting fan and water pump statuses. Their study concluded that while LSTMs 

outperformed CNNs in terms of capturing temporal dependencies, GRUs provided a 

more computationally efficient alternative with similar predictive accuracy. GRUs, 

which are a simplified version of LSTMs, showed faster convergence rates and 

required fewer computational resources, making them suitable for real-time 

applications in smart greenhouses. However, the study emphasized that each model 

had its own strengths and limitations, suggesting that model selection should be 

tailored to the specific characteristics of the dataset and the environmental variable s 

being monitored. Furthermore, [32] explored the performance of hybrid models, 

such as CNN-LSTM and CNN-GRU, in smart greenhouse control systems. Their 

results indicated that hybrid models consistently outperformed standalone CNNs and 

LSTMs by combining spatial feature extraction with temporal sequence modeling. 

However, the complexity of training hybrid models was noted as a potential 

drawback, as they require more computational resources and longer training times. 

Additionally, the study lacked a detailed comparison across a wider range of 
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performance metrics, making it difficult to generalize their findings to other smart 

greenhouse environments. 

 

2.3. Class Imbalance and Data Augmentation 

A critical issue in predictive modeling for smart greenhouses is the class 

imbalance problem, where actuator statuses such as "Fan ON" or "Fan OFF" are not 

evenly distributed in the dataset. Most actuators, such as fans and pumps, are 

typically inactive for longer periods, leading to an imbalance between the "ON" and 

"OFF" classes. This imbalance can skew the model’s predictions towards the 

majority class, resulting in poor predictive performance for the minority class (e.g., 

"Fan ON"). Several studies have explored methods to address this issue, including 

data augmentation and oversampling techniques. 

[33], [34] applied the Synthetic Minority Oversampling Technique (SMOTE) to 

balance the class distribution in their dataset, significantly improving the 

performance of their LSTM and GRU models for predicting fan activations. By 

generating synthetic examples of the minority class, SMOTE allowed the models to 

learn more effectively from the underrepresented "Fan ON" instances. However, the 

study did not explore how other techniques, such as random under sampling or more 

complex data augmentation methods, could impact the performance of the models.  

[35] took a different approach by augmenting their dataset through feature 

manipulation and introducing noise into the training data. By simulating real -world 

conditions where sensor readings might be noisy or incomplete, they improved the 

robustness of their CNN model in predicting actuator statuses. Their research 

highlighted the importance of data quality and augmentation in deep learning 

models, particularly when dealing with imbalanced datasets. However,  further 

research is needed to determine the effectiveness of these techniques across 

different deep learning architectures, including hybrid models.  

 

2.4. Summary of Related Work 

In summary, the literature on predictive modeling for smart greenhouse actuato r 

control reveals a growing interest in deep learning approaches, particularly CNNs, 

LSTMs, and hybrid models like CNN-LSTM and CNN-GRU. Each model offers 

distinct advantages: CNNs excel at spatial feature extraction, LSTMs are well -suited 

for temporal sequence modeling, and GRUs offer a computationally efficient 

alternative to LSTMs. However, few studies have conducted comprehensive 

comparisons of these models in the context of actuator control, particularly in terms 

of metrics like accuracy, precision, recall, and F1-score. Our research aims to fill 

this gap by comparing the performance of CNN, LSTM, GRU, and hybrid CNN-

LSTM models for actuator prediction in a smart greenhouse. Additionally, we 

address the issue of class imbalance by applying SMOTE and data augmentation 

techniques to ensure that our models are trained on balanced datasets, improving 

their predictive accuracy and robustness. This comparative study will provide 

valuable insights into the strengths and limitations of each model and guide futur e 

research in optimizing actuator control in IoT-enabled smart greenhouse systems. 

 

2.5. Dataset 
The dataset used in this study is derived from a smart greenhouse and can be 

downloaded from [36], comprising            observations with        features. 

Each observation records a snapshot of environmental variables and actuator statuses at a 

specific point in time, and the task is to predict the binary status of the fan actuator. Let 

the dataset be represented as a set of feature-label pairs   *(     )           + 
where    ,                   -  is the feature vector for the  -th observation, and 
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   *   + is the corresponding target variable indicating the status of the fan actuator 

(     denotes the fan is on, and      denotes the fan is off). The features include 

continuous variables such as temperature (  ), humidity (  ) , and water level (  ) as well 

as discrete soil nutrient levels, including nitrogen (  ), phosphorus (  ), and potassium 

(   ), which are scaled in the range [0, 255]. Additionally, each observation is 

timestamped, providing an opportunity to model temporal dependencies in the data. 

Formally, the environmental variables can be viewed as components of a multivariate 

time series    (                   ), indexed by time  . The dataset is characterized 

by class imbalance, as the majority of observations correspond to      (fan off), 

creating the need for specialized handling techniques such as synthetic oversampling to 

balance the classes. 

 

2.6. Data Preprocessing 

Data preprocessing is a critical step in preparing the raw dataset for machine learning. 

The preprocessing pipeline involves handling missing values, encoding categorical 

variables, feature engineering, addressing class imbalance, and scaling the data. Each step 

of the process is grounded in formal mathematical operations that ensure the data is 

properly structured for model training. 

 

2.6.1. Handling Missing Values 

Let        represent the feature matrix where each row corresponds to an 

observation   , and each column corresponds to a feature   . Missing values were present 

in both numerical and categorical features, and different strategies were employed 

depending on the feature type. For numerical features such as temperature, humidity, and 

water level, we applied                . Mathematically, given a feature    with 

missing values indexed by the set   , the missing entries were replaced by the arithmetic 

mean of the non-missing values     
impute

 
 

  |  |
∑          where     

impute
 is the imputed 

value for the  -th observation in feature   , and ∑          represents the sum of the 

available (non-missing) values. This ensures that the imputed values maintain the 

distributional properties of the original data. For categorical features, such as actuator 

statuses, we applied mode imputation, where missing values were replaced with the most 

frequent category in the respective feature. Let    be a categorical feature. The imputation 

strategy is defined as     
impute

           frequency ( )  where frequency( )  denotes 

the count of category   in feature   , and the imputed value     
impute

 corresponds to the 

mode of the feature. This method preserves the categorical structure of the feature while 

ensuring no missing values remain. 

 

2.6.2. Feature Engineering and Encoding 

The dataset contained a timestamp feature that provided temporal information about 

each observation. To incorporate time-based patterns into the model, we decomposed the 

timestamp into hour (  ) and minute    components, capturing cyclical daily variations 

that might influence the actuator status. The extraction of time-based features is 

represented as    hour(timestamp )     minute(timestamp ) . These derived 

features were added to the original dataset, allowing the models to learn from temporal 

cycles inherent in the greenhouse environment. For categorical variables, such as the 

binary actuator statuses, we applied label encoding. Each categorical feature    was 

transformed into a numerical format by mapping each unique category to an integer value 

   *          + where    is the number of unique categories in feature   , and each 
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category is assigned a unique integer label. This transformation ensures compatibility 

with deep learning models, which require numerical input. 

 

2.6.3. Handling Class Imbalance 

The target variable   , representing the fan actuator status, exhibited significant class 

imbalance, with most instances labeled as      (fan off). To address this imbalance, we 

employed the Synthetic Minority Oversampling Technique (SMOTE), which generates 

synthetic samples of the minority class (fan on). Given two minority class examples    
and   , SMOTE creates a new synthetic instance  synthetic by interpolating between them 

as follows                (     )    ,   - . The parameter   is randomly 

selected within the unit interval, and the interpolation process generates synthetic samples 

that lie on the line segment between    and   . By applying SMOTE, the class distribution 

was balanced, enabling the models to learn from an evenly distributed dataset, mitigating 

the bias towards the majority class. 

 

2.6.4. Feature Scaling 

Before training the models, it is crucial to ensure that all features are on a comparable 

scale. For this, we applied standard scaling to each numerical feature   . The scaling 

transformation is defined as     
scaled  

       

  
 where    and    are the mean and standard 

deviation of feature   , respectively. This transformation standardizes the feature 

distribution to have zero mean and unit variance. Standard scaling is particularly 

important in deep learning models, as it ensures that features with larger numerical ranges 

do not dominate the training process, thus enabling faster convergence of the optimization 

algorithms. 

 

2.7. Deep Learning Models 
In this study, we employed three deep learning architectures to predict fan actuator 

statuses: Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), and \ 

Long Short-Term Memory (LSTM) networks. Each architecture was selected for its unique 

ability to model different aspects of the dataset, and all models were trained using 10-fold 

cross-validation to ensure generalization across different subsets of the data. 

 

2.7.1. Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron (MLP) is a fully connected feedforward neural network 

that learns a set of weights and biases for each layer to minimize the error in predicting 

the target variable. The MLP is composed of an input layer, one or more hidden layers, 

and an output layer. The forward propagation of the input through the MLP is governed 

by the several equations. For each hidden layer $l$, the activations are computed as 

 ( )   ( ( ) (   )   ( )) where  ( )  represents the activations of layer  ,  ( )  is the 

weight matrix for the connections between layer     and layer  ,  ( ) is the bias vector, 

and  ( )  is a non-linear activation function (ReLU). The final layer uses a sigmoid 

activation function to output a binary probability  ̂   ( out 
( )   out)  where  ̂ 

represents the predicted probability of the fan being on ( ̂  ,   -). 
 

2.7.2. Convolutional Neural Network (CNN) 
The Convolutional Neural Network (CNN) model is particularly suited for capturing 

spatial patterns in the data. CNN applies convolutional filters over the input features to 

extract local dependencies. Each convolutional layer performs the following operation 

    
( )
  .∑             

(   )
  ( )/ where     

( )
 represents the activation at position (   ) in 
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layer  ,    is the convolutional filter, and $\sigma(\cdot)$ is the activation function. After 

each convolution, a max-pooling layer reduces the spatial dimensions, and the final layer 

is a fully connected layer that produces a binary prediction using a sigmoid activation 

function. 

 

2.7.3. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) network is designed to model temporal 

dependencies in sequential data. Each LSTM cell maintains an internal cell state    and a 

hidden state   , which are updated at each time step based on the input    and the 

previous hidden state     . The update equations for the LSTM cell are as follows 

    (  ,       -    ) ,     (  ,       -    ) ,   ̃      (  ,       -    ) , 

                ̃,     (  ,       -    ),           (  ). 
The forget gate    determines how much of the previous cell state      is retained, 

while the input gate    updates the cell state with new information. The output gate    
controls how much of the cell state is used to compute the hidden state, which is passed to 

the next step. This architecture allows the LSTM to model long-term dependencies in the 

time-series data, making it particularly effective for actuator status prediction in dynamic 

environments. 

 

2.7.4. Model Evaluation 

Each model was evaluated using 10-fold cross-validation. The dataset was partitioned 

into 10 equally sized subsets, and for each fold $f$, the model was trained on 9 subsets 

and tested on the remaining subset. This process was repeated 10 times, ensuring that 

each subset was used as a test set once. The final performance metrics were averaged 

across all folds to provide a robust evaluation of model performance. The evaluation 

metrics included accuracy, precision, recall, and F1 score, which are defined as follows 

 ccuracy  
     

           
, Precision  

  

     
, Recall  

  

     
, F  Score    

Precision Recall

Precision Recall
 where    represents true positives (correctly predicted fan on),    

represents true negatives (correctly predicted fan off),    represents false positives 

(incorrectly predicted fan on), and    represents false negatives (incorrectly predicted fan 

off). These metrics provide a comprehensive assessment of each model's ability to handle 

both balanced and imbalanced data and capture the nuances of actuator status prediction. 

 

3. Results and Discussion 
This section presents the results of our comparative analysis of deep learning 

models for predicting fan actuator statuses in a smart greenhouse environment. The 

models included in this evaluation are the Multi-Layer Perceptron (MLP), 

Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) 

network. The primary metrics used to assess model performance were accuracy,  

precision, recall, and F1 score, all of which provide a comprehensive understanding 

of each model's predictive capabilities, especially in dealing with imbalanced 

datasets. The models were evaluated using 10-fold cross-validation to ensure 

reliable and robust results. 

 

3.1. Performance Metrics Overview 

The evaluation of the models was based on the following metrics: accuracy, 

precision, recall, and F1 score. Accuracy measures the proportion of correct 

predictions to the total number of predictions, providing an overall sense of the 

model’s correctness. Precision indicates how well the model predicts positive 

instances (e.g., "Fan ON") by minimizing false positives. Recall captures the 
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model's ability to identify actual positive instances, ensuring that the model does not 

miss any critical "Fan ON" statuses. The F1 score is a harmonic mean of precision 

and recall, offering a balanced metric that combines both aspects and is particularly 

useful when dealing with class imbalance, as in this case.  

 

3.2. Multi-Layer Perceptron (MLP) Results 

The MLP model demonstrated near-perfect performance in predicting the status 

of fan actuators. During the 10-fold cross-validation process, the MLP achieved an 

astonishing mean accuracy of 99.99%. This exceptionally high accuracy indicates 

that the model made very few errors across all the data splits. Moreover, the MLP’s 

precision score was perfect at 1.0000, reflecting that the model correctly identified 

all instances of the fan being turned on without producing any false positive s. 

Similarly, the recall score of 0.9999 suggests that the model missed almost no 

instances where the fan should have been turned on. These high precision and recall 

values were reflected in the F1 score of 0.9999, which shows that the MLP model is 

highly reliable in both capturing all positive cases and avoiding false positives.  

The near-perfect performance of the MLP model can be attributed to its 

simplicity and ability to handle the structured features of the dataset effectively. The 

model’s fully connected architecture allows it to process environmental data 

efficiently and identify patterns without the need for extensive temporal or spatial 

processing, as required by other models. The application of SMOTE to balance the 

classes in the dataset also likely contributed to the MLP’s strong performance, as 

the model was trained on balanced data and thus avoided bias toward the majority 

class. 

 

3.3. Convolutional Neural Network (CNN) Results 

The CNN model also performed impressively, though it did not quite match the 

MLP's level of accuracy. The mean accuracy of the CNN model was 99.77%, 

indicating that it made slightly more errors compared to the MLP. However, this 

level of performance still demonstrates CNN’s strong predictive capabilities, 

particularly given the complexity of the dataset. The precision score of the CNN 

was 0.9965, indicating that the model made a small number of false positive 

predictions when classifying the "Fan ON" status. Its recall score was 0.9989, 

showing that the CNN was highly effective in identifying true positive instances of 

the fan being turned on, though it missed slightly more cases than the MLP.  

The F1 score for the CNN was 0.9977, which balances its precision and recall 

performance. The lower precision compared to recall suggests that the CNN was 

more likely to make a false positive prediction than a false negative. This may be 

due to the nature of CNNs, which are highly effective at capturing spatial 

relationships in data but may struggle with temporal dependencies, particularly  in 

dynamic environments where actuator states change over time. Despite this 

limitation, the CNN model’s ability to extract features from environmental data such 

as temperature, humidity, and soil nutrients allowed it to achieve high overall 

performance. CNNs excel in feature extraction through convolutional layers, making 

them well-suited for tasks where the spatial distribution of data is important, as in 

the case of greenhouse sensors placed at different locations.  

 

3.4. Long Short-Term Memory (LSTM) Results 

The LSTM model, designed to capture temporal dependencies in time-series data, 

showed excellent performance in this task, particularly when predicting time-

dependent variables such as the status of the fan actuator. The mean accuracy of the 

LSTM was 99.96%, only slightly lower than that of the MLP but higher than the 
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CNN. This accuracy level suggests that the LSTM model made very few incorrect 

predictions. The precision score of 0.9993 indicates that the model was almost 

perfect in avoiding false positives, while the recall score of 0.9999 demonstrates 

that the LSTM was nearly flawless in identifying all instances where the fan should 

have been turned on. 

The F1 score for the LSTM was 0.9996, showing that it achieved a near -perfect 

balance between precision and recall. The model's ability to retain information over 

multiple time steps allowed it to model the temporal sequences within the 

environmental data effectively, making it particularly suitable for predicting 

actuator statuses in environments where conditions evolve over time. Unlike CNNs, 

which focus on spatial feature extraction, LSTMs are specifically designed to handle 

sequential data by maintaining a memory of past inputs, allowing them to capture 

the time-dependent relationships that influence the fan actuator's behavior. 

 

3.5. Comparative Analysis 

The comparative analysis of the three models—MLP, CNN, and LSTM—reveals 

that all three architectures performed exceptionally well in predicting fan actuator 

statuses, though with slight differences in their strengths and weaknesses. The MLP 

model emerged as the top performer, with the highest accuracy, precision, recall, 

and F1 score. Its simplicity and effectiveness in handling structured data allowed it 

to achieve nearly perfect results. The MLP's ability to balance performance across 

all metrics, particularly in a balanced dataset created using SMOTE, highlights its 

capability as a reliable predictive model in this context.  

The CNN model, while slightly less accurate than the MLP, demonstrated strong 

performance in feature extraction, particularly when dealing with spatial data. Its 

slightly lower precision indicates that the model was more prone to false positives 

than the MLP and LSTM. This suggests that CNNs may be more sensitive to minor 

variations in the data, which could lead to occasional misclassifications. However, 

the CNN still performed remarkably well, particularly in recall, which shows that it 

was able to capture most of the true positive instances.  The LSTM model proved to 

be highly effective in capturing temporal dependencies, outperforming the CNN in 

both accuracy and precision. Its near-perfect recall suggests that the LSTM is 

particularly suited for tasks that require sequential modeling, such as time-

dependent predictions in a dynamic environment like a smart greenhouse. The 

LSTM’s strong performance, especially in terms of recall, highlights its advantage 

in environments where past conditions heavily influence future outcomes.  

 

4. Conclusion 
This study demonstrates the effectiveness of deep learning models in predicting 

fan actuator statuses within IoT-enabled smart greenhouses, providing a robust 

solution for automated climate control. By employing three different deep learning 

architectures: Multi-Layer Perceptron (MLP), Convolutional Neural Network 

(CNN), and Long Short-Term Memory (LSTM), we compared their abilities to 

model complex environmental data and control system responses. The results show 

that all three models achieved high levels of predictive accuracy, with the MLP 

model slightly outperforming the others in terms of accuracy and F1 score. The 

CNN was particularly adept at capturing spatial relationships within the 

greenhouse’s environmental variables, while the LSTM demonstrated strong 

capabilities in modeling temporal dependencies. 

The application of the Synthetic Minority Oversampling Technique (SMOTE) to 

address class imbalance significantly improved the models' ability to predict the less 

frequent "fan-on" status. Additionally, the use of standard scaling ensured consis tent 
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feature representation across all models, contributing to their overall performance. 

Our comparative analysis suggests that the choice of model architecture should be 

tailored to the specific characteristics of the data and the operational requirement s 

of the greenhouse. For instance, MLP offers a reliable general solution, while CNN 

and LSTM models provide enhanced capabilities for spatial and temporal data, 

respectively. Future research could explore hybrid models or investigate the use of 

more advanced deep learning techniques to further optimize actuator control in 

smart agricultural systems. Ultimately, the findings of this study highlight the 

significant potential of integrating deep learning with IoT technologies to enhance 

the efficiency and sustainability of greenhouse operations. 
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