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Abstract 
Tsunamis, triggered by seismic activities, pose significant threats to coastal regions, 

necessitating accurate prediction models to mitigate their impact. This study explores the 

application of machine learning models, including ensemble methods (Random Forest, 

Gradient Boosting, XGBoost, LightGBM, and CatBoost) and deep learning (Neural 

Networks), for tsunami prediction based on seismic data. The dataset spans seismic 

events from 1995 to 2023, characterized by features such as magnitude, depth, and 

geographic location. A 10-fold cross-validation approach was employed to evaluate 

model performance using precision, recall, F1-score, accuracy, and ROC-AUC metrics. 

The results highlight that Gradient Boosting achieved the best balance between precision 

and recall, with an F1-score of 0.6544 and the highest ROC-AUC of 0.8606, 

demonstrating its strong discriminatory power. Random Forest excelled in precision 

(0.6920) and F1-score (0.6287), making it suitable for reducing false positives. Ensemble 

boosting models, such as CatBoost and LightGBM, offered consistent performance with 

low variability across folds. In contrast, Neural Networks underperformed, achieving an 

F1-score of 0.5497 and an ROC-AUC of 0.7936, indicating the need for further 

optimization. Despite promising results, challenges in recall scores underscore the need 

for enhanced detection of tsunami-triggering events. The findings establish ensemble 

methods, particularly Gradient Boosting and Random Forest, as robust tools for tsunami 

prediction, providing a foundation for early warning systems. Future work will focus on 

improving recall and exploring hybrid modeling techniques to optimize predictive 

accuracy and reliability. 

 

Keywords: Tsunami prediction, Machine learning, Ensemble models, Neural networks, 

Seismic data analysis. 

 

1. Introduction 
Natural disasters remain one of the most significant challenges to human safety, 

infrastructure, and economic stability [1]–[3]. Among these, tsunamis, characterized by 

sudden and devastating waves often triggered by undersea earthquakes, pose a particularly 

grave threat to coastal regions globally [4]–[6]. Over the past three decades, 

advancements in geoscience have significantly improved our understanding of tsunami 

genesis, yet predicting their occurrence with precision remains a pressing challenge [7]–

[9]. The complexity of seismic data, coupled with the inherent uncertainty in geological 

phenomena, necessitates innovative approaches to improve prediction accuracy and 

timeliness [10]–[12]. Recent studies have explored various computational techniques for 

tsunami prediction, including statistical modeling, physical simulations, and, more 

recently, machine learning (ML)[13]–[15]. ML models have demonstrated considerable 

potential due to their ability to analyze vast datasets and uncover patterns that traditional 

methods might overlook [16]. For instance, gradient boosting and random forest 

classifiers have been utilized to predict tsunami likelihood based on seismic parameters 

such as magnitude, depth, and geographic coordinates [17]. However, despite their 

promise, existing models often suffer from limitations such as overfitting, lack of 
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generalizability across different geographical regions, and challenges in handling missing 

or imbalanced data [18]. 

Moreover, the integration of deep learning models, including Convolutional Neural 

Networks (CNNs) and Neural Networks (NNs), has opened new frontiers in predictive 

modeling [19]. Deep learning excels in extracting high-level features from complex 

datasets, making it a promising candidate for seismic and tsunami prediction [20]. 

Nevertheless, there remains a research gap in evaluating the comparative performance of 

classical ML algorithms and advanced deep learning models within the context of tsunami 

prediction [21]. Specifically, the effectiveness of hybrid approaches that combine classical 

ensemble methods with deep neural architecture has not been adequately investigated 

[22]. The urgency of this research lies in the devastating impact of tsunamis, as 

exemplified by recent catastrophic events, such as the 2011 Tōhoku tsunami in Japan and 

the 2018 Sulawesi tsunami in Indonesia [23]. These events underscored the need for 

accurate and timely prediction systems to enable effective early warning and mitigation 

strategies [24]. Current state-of-the-art systems, such as the DART (Deep-ocean 

Assessment and Reporting of Tsunamis) buoy network, provide critical data on oceanic 

disturbances but require complementary predictive models for rapid risk assessment [25]. 

Integrating ML and deep learning models with such systems could revolutionize tsunami 

warning systems by providing probabilistic predictions based on real-time seismic data 

[24]. 

This study addresses the research gaps by systematically comparing the performance 

of classical machine learning models, such as Random Forest, Gradient Boosting, and 

XGBoost, with deep learning models, including neural networks, for tsunami prediction 

[26], [27]. The research leverages a large dataset of seismic events from 1995 to 2023, 

incorporating features such as earthquake magnitude, latitude, longitude, depth, and 

tsunami occurrence [28]. Advanced preprocessing techniques, including scaling and 

cross-validation, ensure robust model evaluation. Additionally, the study explores the 

potential of hybrid ensemble approaches, such as majority voting, to improve prediction 

accuracy and reliability. The primary contributions of this research are threefold. First, it 

establishes a comprehensive benchmark for the performance of classical and deep 

learning models in tsunami prediction. Second, it demonstrates the efficacy of a hybrid 

ensemble method, integrating predictions from multiple models to achieve higher 

accuracy and robustness. Third, it provides actionable insights into the critical features 

influencing tsunami occurrence, thus aiding domain experts in refining predictive systems 

and early warning frameworks. The remainder of this article is structured as follows: The 

next section provides a detailed review of related work, highlighting recent advancements 

in ML and deep learning for disaster prediction. This is followed by the methodology 

section, which outlines the dataset, preprocessing steps, and model implementation. The 

results and discussion section presents a comparative analysis of model performance, 

emphasizing key findings and implications for tsunami prediction systems. Finally, the 

conclusion summarizes the contributions of this study and discusses potential directions 

for future research. 

 

2. Research Methodology 
Predicting natural disasters, particularly tsunamis, has been a focal point of 

research due to the devastating effects these phenomena can have on human lives 

and infrastructure. The application of machine learning (ML) and deep learning 

(DL) techniques in this domain has witnessed significant growth, with researchers 

striving to overcome the limitations of traditional statistical and simulation -based 

approaches. This section reviews recent advancements in ML and DL applied to 

disaster prediction, focusing on their evolution, methodologies, and identified gaps 

in the literature. 
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2.1. Machine Learning Approaches for Disaster Prediction 

ML techniques have been widely used for disaster prediction due to their ability 

to analyze large datasets and identify complex patterns. Early studies employed 

traditional algorithms like Support Vector Machines (SVM) and Decision Trees to 

predict earthquakes and their associated risks, including tsunamis. For instance, [29] 

demonstrated the efficacy of Random Forest classifiers in predicting tsunami 

occurrences based on seismic parameters such as magnitude, depth, and location. 

Their study emphasized the importance of feature selection in improving model 

accuracy. Ensemble models, such as Gradient Boosting Machines (GBMs) and 

XGBoost, have since become popular due to their robust performance and ability to 

reduce overfitting. [30] employed GBMs to predict landslide susceptibility after 

seismic events, achieving higher accuracy than individual models. Similarly , [31] 

utilized XGBoost to assess tsunami risks in the Indian Ocean, demonstrating the 

model's capability to handle imbalanced datasets effectively through techniques like 

Synthetic Minority Oversampling Technique (SMOTE). Despite these 

advancements, ML models often face challenges such as limited generalizability 

across regions, sensitivity to noisy data, and reliance on manual feature engineering. 

These limitations underscore the need for more adaptive and automated methods, 

such as deep learning. 

 

2.2. Deep Learning in Disaster Prediction 

Deep learning, characterized by its ability to automatically extract high-level 

features from raw data, has revolutionized disaster prediction. Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) are among the most 

widely used architectures in this field. [32] demonstrated the effectiveness of CNNs 

in analyzing satellite imagery to predict flood-prone areas, highlighting the model's 

superior feature extraction capabilities. Similarly, [33] utilized RNNs, particularly 

Long Short-Term Memory (LSTM) networks, to model temporal dependencies in 

seismic data, achieving high accuracy in earthquake prediction.  Hybrid models 

combining CNNs and RNNs have shown promising results in disaster prediction. 

For example, [34] proposed a CNN-LSTM model to predict tsunami wave heights 

based on real-time seismic data, achieving better performance than standalone CNN 

or LSTM models. The study highlighted the hybrid model's ability to capture both 

spatial and temporal features, which are critical for accurate tsunami prediction.  

Another emerging area is the application of attention mechanisms in disaster 

prediction. Attention-based models, such as Transformers, have been successfully 

applied to various tasks, including earthquake risk assessment. [35] incorporated 

attention mechanisms into their LSTM model to focus on critical time steps in 

seismic data, resulting in enhanced prediction accuracy and interpretability.  

 

2.3. Hybrid and Ensemble Methods 

Combining traditional ML models with DL architecture has emerged as a 

promising approach to leverage the strengths of both paradigms. Ensemble methods, 

such as stacking and majority voting, have been used to combine predictions from 

multiple models, improving robustness and accuracy. [36] developed a hybrid 

ensemble model integrating Random Forest, XGBoost, and a CNN-based deep 

learning model to predict tsunami occurrences. Their results showed that the hybrid 

model outperformed individual models, particularly in handling imbalanced 

datasets. Moreover, advanced ensemble strategies, such as weighted voting and 

meta-learning, have been explored. [37] proposed a meta-learning framework that 

dynamically selects the best-performing model based on the input data 

characteristics, achieving state-of-the-art results in earthquake prediction. 
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2.4. Challenges and Research Gaps 

Despite these advancements, several challenges remain in applying ML and DL to 

disaster prediction. First, the availability of high-quality, labeled datasets is a 

significant bottleneck. Many existing datasets are region-specific, limiting the 

generalizability of trained models. Second, handling missing or noisy data is a 

persistent issue, particularly for seismic datasets with incomplete records of events. 

Third, the interpretability of complex models, especially deep learning architectures, 

poses challenges for their adoption in real-world applications, where transparency 

and trust are crucial. Furthermore, while hybrid models have shown promise, their 

computational complexity can be a barrier to real-time prediction. There is a need 

for optimized algorithms that balance accuracy and computational efficiency, 

particularly for deployment in early warning systems. 

Emerging trends in disaster prediction research include the integration of multi -

source data, such as combining seismic data with satellite imagery or oceanic sensor 

readings. The use of transfer learning to adapt pre-trained models to new regions or 

disaster types is also gaining traction. Additionally, the application of explainable 

AI (XAI) techniques is expected to address the interpretability challenges of 

complex models. In conclusion, ML and DL have made significant strides in 

disaster prediction, offering tools to improve the accuracy and timeliness of early 

warning systems. However, addressing the challenges of data quality, model 

interpretability, and computational efficiency remains critical for future research. 

This study builds on these advancements by systematically comparing classical ML 

and DL models, with a focus on their applicability to tsunami prediction, thereby 

contributing to the growing body of knowledge in this domain. 

 

2.5. Proposed Methodology 

The methodology employed in this study integrates comprehensive data preprocessing 

techniques, advanced predictive modeling approaches, and rigorous evaluation strategies 

to address the problem of tsunami prediction. Each stage is detailed to ensure the clarity 

and reproducibility of the research process, emphasizing the mathematical rigor 

underlying the applied methods. 

2.5.1. Dataset Description 

The data set used in this study comprises seismic events recorded globally from 1995 

to 2023 and can be downloaded from [38]. Each seismic event is represented as a feature 

vector                  where         includes key attributes such as earthquake 

magnitude (   ), latitude (   ), longitude (   ), depth (   ), Modified Mercalli Intensity 

(MMI), Community Internet Intensity (CDI), and a binary target variable    , indicating 

whether the event triggered a tsunami (       ) or not (       ). The dataset can be 

expressed as (1). 

                  (1) 

where          and           . Missing values in features such as MMI and CDI 

were addressed during preprocessing, and rows with critical missing values, particularly 

in    ,    ,    ,    , and    , were removed to ensure data integrity. 

 

2.5.2. Data Preprocessing 

To ensure the data's suitability for predictive modeling, several preprocessing steps 

were applied. Missing values in continuous attributes were imputed using median 

imputation, defined as (2). 

  ̂  median(    ∣∣    N  )      (2) 

for each feature      with incomplete observations. To ensure uniform feature scaling, 

each attribute was normalized to the range  [   ]  using the MinMaxScaler 

transformation as defined as (3). 
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   scaled  
      (  )

   (  )    (  )
       (3) 

Class imbalance was addressed using the Synthetic Minority Oversampling Technique 

(SMOTE), where synthetic samples   ̃  were generated as (4). 

 ̃   minority    ( nearest neighbor   minority)     (4) 

with    Uniform      . The dataset was split into training and testing subsets using 

stratified    -fold cross-validation with         , preserving the class distribution in 

each fold. For a given fold, the dataset was divided into training          and validation 

       sets, where         and              
 

2.5.3. Model Implementation 

The predictive modeling phase involved both classical machine learning algorithms 

and advanced deep learning architecture. Classical models included Random Forest, 

Gradient Boosting, XGBoost, LightGBM, and CatBoost. These models optimized the 

binary cross-entropy loss function, defined as      ̂   
 

 
∑ [        ̂   

   

              ̂ ] , where    ̂  is the predicted probability for the    -th instance. 

Hyperparameters, such as the number of estimators (    ), learning rate (    ), and 

maximum tree depth, were tuned for optimal performance using grid search. In addition to 

classical models, a feedforward neural network was implemented with three hidden layers 

of sizes 256, 128, and 64 neurons, respectively. Each hidden layer applied the ReLU 

activation function, defined as (5). 

     ReLU(               )      (5) 

where          represents the activations from the previous layer,        denotes the 

weight matrix, and        is the bias vector. Dropout regularization with a rate of 0.3 was 

applied after each hidden layer to prevent overfitting. The output layer consisted of a 

single neuron with a sigmoid activation function      
 

     , producing the probability 

  ̂  of a tsunami-triggering event. The network was trained using the Adam optimizer 

with a learning rate of             and binary cross-entropy loss for 50 epochs with a 

batch size of 32. An ensemble method combining predictions from all models was 

implemented using majority voting. For a given instance    , the ensemble prediction 

  ensemblê   was determined as (6). 

 ensemblê  mode   RF̂  G ̂  XG ̂         (6) 

where  mode  denotes the most frequent class among individual model predictions. For 

probabilistic evaluation, the ensemble averaged predicted probabilities as 

     ∣∣   ensemble  
 

 
∑  (   ∣∣     

   
) 

    where     is the number of models 

in the ensemble. 

 

2.5.4. Evaluation Metrics 

Model performance was evaluated using precision (   ), recall (   ), F1-score (    ), 
accuracy (   ), and the area under the receiver operating characteristic curve (AUC). 

These metrics were mathematically defined as (7) – (11). 

  
TP

TP FP
         (7) 

  
TP

TP FN
         (8) 

   
   

   
         (9) 

  
TP TN

TP TN FP FN
        (10) 

 U  ∫ TPR FPR 
 

 
   FPR       (11) 

where  TP ,  FP ,  TN , and  FN  denote true positives, false positives, true 

negatives, and false negatives, respectively. Results were averaged across all folds of 
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cross-validation to ensure robustness and reliability. This methodology establishes a 

rigorous and comprehensive framework for evaluating tsunami prediction models, 

emphasizing the integration of classical and deep learning methods to advance predictive 

accuracy and reliability. 

 

3. Results and Discussion 
The results of the study demonstrate the performance of various machine learning 

models across 10-fold cross-validation, focusing on five key evaluation metrics: 

precision, recall, F1-score, accuracy, and ROC-AUC. The models evaluated include 

CatBoost, Gradient Boosting, LightGBM, Neural Network, Random Forest, and 

XGBoost. Additionally, the performance of a hybrid ensemble approach using majority 

voting is presented. The average performance metrics for the models are summarized in 

the table. Among the models, Random Forest achieved the highest precision (0.692) and 

demonstrated strong overall performance with an F1-score of 0.629, an accuracy of 0.779, 

and an ROC-AUC of 0.859. Similarly, Gradient Boosting exhibited balanced performance 

across metrics, with the highest recall (0.637) and a competitive F1-score (0.654). 

CatBoost and LightGBM showed comparable performance, achieving F1-scores of 

0.619 and 0.639, respectively, while maintaining high ROC-AUC values above 0.85. 

Neural Network lagged behind in all metrics, with the lowest F1-score (0.550) and 

accuracy (0.729), suggesting potential limitations in its ability to handle the dataset or the 

need for additional optimization. The standard deviation values indicate the stability of 

model performance across the 10 folds. Gradient Boosting demonstrated the most 

consistent performance, with low standard deviations across all metrics (e.g., accuracy: 

0.044, ROC-AUC: 0.049). Conversely, CatBoost and Neural Network showed higher 

variability, especially in precision and recall, indicating less stable performance across the 

folds. 

In addition, the hybrid ensemble approach, which combines the predictions of the 

individual models using majority voting, achieved an average precision of 0.661 (±0.088), 

recall of 0.646 (±0.107), and F1-score of 0.652 (±0.093). The ensemble also demonstrated 

competitive accuracy (0.777 ± 0.056) and ROC-AUC (0.795 ± 0.078). These results 

suggest that the ensemble effectively leverages the strengths of individual models to 

produce more robust predictions, although the improvement in metrics compared to the 

best-performing individual models is modest. 

The results highlight the strengths and limitations of different machine learning models 

in the context of the problem. Random Forest and Gradient Boosting consistently 

outperformed other models in terms of precision, recall, and ROC-AUC, indicating their 

capability to capture complex relationships in the data. The strong performance of these 

models can be attributed to their ensemble nature and ability to handle diverse feature 

interactions. Neural Network, on the other hand, performed poorly compared to the 

ensemble methods. This may be due to insufficient tuning or the need for a more complex 

architecture to effectively model the data. It also suggests that deep learning methods may 

require more extensive feature engineering or larger datasets to match the performance of 

tree-based methods in this specific task. The hybrid ensemble approach provided a stable 

and competitive performance, demonstrating that combining multiple models can mitigate 

individual weaknesses and enhance overall robustness. However, the lack of substantial 

improvement over the best-performing individual models indicates that further 

exploration of ensemble techniques, such as weighted voting or stacking, may be 

necessary to fully exploit the potential of the hybrid approach. In terms of stability, 

Gradient Boosting showed the most consistent performance, which is a desirable attribute 

in practical applications where reliability is critical. High variability in CatBoost and 

Neural Network suggests these models are more sensitive to the specific training data 

splits, which might limit their applicability in real-world scenarios. Overall, the results 
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emphasize the effectiveness of tree-based ensemble methods for this dataset, while also 

highlighting areas for improvement in neural network models and hybrid ensemble 

techniques. Future work could explore hyperparameter tuning, feature selection, and 

advanced ensemble methods to further enhance performance. 

 

Table 1. Average Performance Across 10 Folds 

Model Precision Recall F1-Score Accuracy ROC-AUC 

CatBoost 0.679585 0.572633 0.619368 0.774 0.855036 

Gradient 

Boosting 

0.675067 0.636932 0.654406 0.781 0.860639 

LightGBM 0.661988 0.621496 0.639242 0.772 0.856496 

Neural 

Network 

0.60272 0.514489 0.549748 0.729 0.793574 

Random 

Forest 

0.691984 0.578693 0.628691 0.779 0.85888 

XGBoost 0.65392 0.633996 0.642051 0.772 0.8555 

 

Table 2. Standard Deviation Across 10 Folds 
Model Precision Recall F1-Score Accuracy ROC-AUC 

CatBoost 0.111853 0.121187 0.116457 0.063105 0.060714 

Gradient 

Boosting 

0.076145 0.06412 0.064803 0.043576 0.049171 

LightGBM 0.107307 0.104697 0.100581 0.066466 0.054485 

Neural 

Network 

0.111692 0.117946 0.097572 0.055668 0.062734 

Random 

Forest 

0.110516 0.109541 0.106873 0.062619 0.057015 

XGBoost 0.081215 0.106209 0.089952 0.054324 0.05525 

 

Table 3. Hybrid Ensemble Performance 

Metric Average Standard Deviation 

Precision 0.661 0.088 

Recall 0.6463 0.1065 

F1-Score 0.6517 0.0925 

Accuracy 0.777 0.0562 

ROC-AUC 0.795 0.0775 

 

4. Conclusion 
This study evaluated the performance of various machine learning models, 

including CatBoost, Gradient Boosting, LightGBM, Neural Network, Random 

Forest, and XGBoost, on a dataset using 10-fold cross-validation. The findings 

highlight the effectiveness of ensemble methods, with Random Forest and Gradient 

Boosting emerging as the top-performing models based on metrics such as 

precision, recall, F1-score, accuracy, and ROC-AUC. These models demonstrated a 

robust ability to capture complex patterns in the data, achieving high performance 

with relatively low variability across folds. The hybrid ensemble approach using 

majority voting achieved competitive results, combining the strengths of individual 

models to produce stable and reliable predictions. While the hybrid model did not 

significantly outperform the best single models, it showed potential for robustness 

and generalization, particularly in scenarios involving varied data distributions.  

The Neural Network underperformed compared to tree-based methods, suggesting 

the need for further optimization or the application of more sophisticated deep 

learning architectures to improve its utility for this dataset. Furthermore, the 

variability in performance metrics for certain models, such as CatBoost and Neural 
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Network, indicates sensitivity to data splits, which could be addressed through 

enhanced feature engineering or hyperparameter tuning. In conclusion, ensemble 

methods, particularly Random Forest and Gradient Boosting, are well-suited for this 

problem due to their consistent and high performance across evaluation metrics. The 

hybrid ensemble approach offers a promising avenue for improving robustness, 

while neural networks require further exploration and refinement. Future research 

could focus on advanced ensemble techniques, feature engineering, and 

hyperparameter optimization to further enhance model performance and 

applicability. Additionally, integrating domain-specific insights into the model 

development process could improve the interpretability and utility of the results in 

real-world scenarios. 
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