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Abstract 
Tsunamis are among the most catastrophic natural disasters, often triggered by 

seismic events such as earthquakes. Accurately predicting tsunami occurrences based on 

seismic parameters is critical for mitigating their devastating impacts. This study 

investigates the application of three advanced deep learning architectures such as 

Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), 

and Gated Recurrent Units (GRUs) for binary classification of tsunami events using 

seismic data. The dataset comprises earthquake records from 1995 to 2023, including 

features such as magnitude, depth, latitude, longitude, Modified Mercalli Intensity (MMI), 

and Community Internet Intensity (CDI). The models were evaluated using stratified 10-

fold cross-validation and assessed across precision, recall, F1-score, accuracy, and 

ROC-AUC metrics. Results indicate that CNN outperformed the other architectures, 

achieving the highest accuracy (72.5%), precision (0.5987), and ROC-AUC (0.7838). 

GRU demonstrated moderate performance, balancing computational efficiency and 

predictive accuracy with an accuracy of 71.7% and ROC-AUC of 0.7709. LSTM, while 

theoretically adept at modeling temporal dependencies, showed the lowest performance 

due to challenges in capturing the dataset’s characteristics. The findings emphasize the 

importance of selecting architecture suited to the dataset’s features and task 

requirements. CNN’s superior performance highlights its effectiveness in spatial pattern 

extraction, while GRU offers a computationally efficient alternative. Future work will 

explore hybrid models and the integration of additional features to enhance prediction 

robustness. This study contributes to advancing tsunami prediction methodologies, 

supporting early warning systems for disaster preparedness. 
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1. Introduction 
The catastrophic impacts of tsunamis, driven by seismic activities such as earthquakes, 

pose severe threats to human lives, infrastructure, and economic stability [1]–[3]. Despite 

advancements in seismology, predicting the occurrence of tsunamis based on seismic 

parameters remains a critical challenge due to the complexity of their underlying 

dynamics [4]–[6]. Accurate prediction systems are essential for timely disaster response 

and mitigation, especially in regions highly susceptible to seismic hazards [7]–[9]. In this 

study, we propose a robust deep learning framework for tsunami prediction, leveraging 

historical earthquake data collected globally between 1995 and 2023. Recent 

advancements in machine learning and deep learning have revolutionized predictive 

modeling across various domains, including healthcare, finance, and environmental 

sciences. Among these advancements, deep learning architectures such as Convolutional 

Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and Gated 

Recurrent Units (GRUs) have demonstrated remarkable performance in extracting spatial, 

temporal, and sequential patterns from complex datasets. CNNs are highly effective in 

capturing localized patterns in high-dimensional data, while LSTMs and GRUs are 
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tailored for modeling long-term dependencies, making them suitable for sequential data 

such as seismic records [10]–[12]. However, a comprehensive comparative evaluation of 

these architectures for tsunami prediction using global earthquake data has not been 

extensively explored in the literature. 

Existing approaches to tsunami prediction predominantly rely on statistical models or 

traditional machine learning techniques, which often fail to capture the intricate 

relationships between seismic parameters such as magnitude, depth, latitude, and 

longitude [13]–[15]. Moreover, the lack of rigorous cross-validation frameworks and 

imbalanced class distributions in previous studies has limited the generalizability and 

reliability of their predictive models [16]–[18]. These challenges underline the necessity 

for a more sophisticated methodology that integrates advanced deep learning models 

validated through robust experimental setups [19]–[21]. This research addresses these 

gaps by employing CNN, LSTM, and GRU architectures for binary classification of 

tsunami occurrence. The dataset used in this study comprises seismic parameters, 

including magnitude, depth, latitude, longitude, Modified Mercalli Intensity (MMI), and 

Community Internet Intensity (CDI), which are preprocessed through imputation of 

missing values, normalization using MinMax scaling, and transformation for 

compatibility with sequential models. The target variable, indicating whether an 

earthquake triggered a tsunami, is modeled as a binary classification problem to evaluate 

the predictive capabilities of the proposed models. 

A stratified 10-fold cross-validation approach was implemented to ensure balanced 

representation of the minority class and robust performance evaluation. Each model 

architecture was designed to exploit specific data characteristics: CNNs for spatial feature 

extraction, LSTMs for capturing temporal dependencies, and GRUs as computationally 

efficient alternatives for sequence modeling. The models were trained using the Adam 

optimizer with a binary cross-entropy loss function, and their performance was assessed 

using metrics such as accuracy, precision, recall, F1-score, and area under the Receiver 

Operating Characteristic curve (ROC-AUC). This study contributes to the state-of-the-art 

by presenting a systematic evaluation of advanced deep learning models for tsunami 

prediction using a large-scale, real-world dataset. The findings highlight the potential of 

deep learning to enhance the accuracy and reliability of tsunami prediction systems, 

providing a foundation for future research into hybrid architectures and real-time 

predictive solutions. Future work will explore the integration of additional data sources, 

such as oceanographic and atmospheric variables, to further improve predictive 

capabilities and support disaster mitigation strategies globally. The remainder of this 

article is organized as follows: Section 2 describes the dataset and preprocessing pipeline, 

detailing the features, target variable, and transformations applied to prepare the data for 

modeling. Section 3 introduces the proposed methodology, including the architectures of 

CNN, LSTM, and GRU models, their configurations, and the stratified cross-validation 

approach used for evaluation. Section 4 presents the experimental results, offering a 

detailed comparative analysis of the models across various performance metrics and folds. 

Finally, Section 5 concludes the article, summarizing the key contributions and 

emphasizing the importance of integrating deep learning techniques in disaster prediction 

systems. 

 

2. Research Methodology 
2.1. Dataset and Preprocessing 

The dataset utilized in this study encompasses global earthquake records spanning 

from 1995 to 2023, providing a comprehensive representation of seismic activities 

and their associated parameters and can be downloaded from [22]. The primary 

features included in the dataset are magnitude, latitude, longitude, depth, Modified 

Mercalli Intensity (MMI), and Community Internet Intensity (CDI). The target 
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variable, tsunami occurrence, is modeled as a binary classification problem where 

   *   +, with       indicating the presence of a tsunami and       signifying 

its absence. The dataset is characterized by a significant class imbalance, as most 

earthquakes do not result in tsunamis. This imbalance necessitated specialized 

preprocessing steps to ensure the dataset’s suitability for training robust and 

generalizable predictive models. 

Initially, the dataset was cleaned by addressing missing values and removing 

incomplete records in critical features such as magnitude (  ), latitude (  ), 

longitude ( ), depth ( ), and tsunami occurrence ( ). For secondary features, 

including MMI and CDI, missing values were imputed using the median of the 

respective feature, denoted mathematically as (1). 

MMIimputed  median(MMI)    Iimputed  median(  I) (1) 

 

This approach preserved the overall statistical distribution while minimizing 

information loss. To normalize the numerical range of features and improve model 

convergence, Min-Max Scaling was applied to all input variables. For a feature   , 
the normalized value  scaled   was computed as (2). 

 scaled   
      ( )

   ( )     ( )
 

(2) 

 

This transformation maps all feature values to the range ,   - , ensuring 

uniformity across variables with different scales, such as magnitude, which typically 

ranges between 2.0 and 9.5, and depth, which spans from near-surface to hundreds 

of kilometers. The target variable was processed for binary classification. The 

original tsunami labels were transformed into a binary format, expressed 

mathematically as (3). 

   *  if a tsunami was triggered  y the earthquake    otherwise + (3) 

 

Given the imbalance in the target classes, additional preprocessing techniques 

such as Synthetic Minority Oversampling Technique (SMOTE) were explored in 

some experimental configurations. SMOTE generates synthetic samples for the 

minority class by interpolating between existing instances, effectively balancing the 

dataset. To prepare the data for deep learning models, the feature matrix   was 

reshaped into three-dimensional tensors, ensuring compatibility with sequential 

models. Specifically, for a dataset with   samples and   features, the input to the 

models was reshaped as (4). 

 rsae   
      (4) 

 

This format allowed CNNs to perform convolutional operations across the spatial 

dimensions of the features, while LSTMs and GRUs captured temporal 

dependencies in the sequence of features. The dataset was evaluated using a 

stratified 10-fold cross-validation scheme to ensure robust and unbiased assessment 

of model performance. Stratification ensured that the proportion of tsunami and 

non-tsunami classes in the target variable was preserved across each fold. For a 

given fold  , the dataset was split into training and testing subsets, denoted as 

* tan   tan + and * ts    ts  +, respectively as presented as (5). 

 tan   ts       tan   ts     (5) 

 

This ensured that each model was trained on     of the data and tested on the 

remaining 10% in each fold, providing a comprehensive evaluation across all 

samples. The resulting preprocessing pipeline involved multiple stages,  starting 

from data cleaning and imputation to feature scaling and target encoding, 
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culminating in reshaping for model compatibility and implementing cross -

validation. Mathematically rigorous transformations ensured that the dataset was 

well-prepared for training and evaluating deep learning models, thereby enabling 

robust and reliable tsunami prediction. 

 

2.2. Proposed Methodology 

This study employs three advanced deep learning architectures: Convolutional Neural 

Networks (CNN), Long Short-Term Memory Networks (LSTM), and Gated Recurrent 

Units (GRU) to predict tsunami occurrences based on seismic data. Each model is 

specifically designed to exploit unique data characteristics, enabling a comprehensive 

evaluation of their predictive capabilities. This section provides a detailed explanation of 

the architecture, configurations, training processes, and evaluation framework. CNN 

architecture is constructed to capture spatial patterns within the seismic data. The 

convolutional layers apply filters to the input tensor, producing feature maps through 

operations defined as (6). 

        (∑ ∑∑        

 

   

 

   

 

   

                  ) 

(6) 

 

where (      ) represents the input tensor, (        ) is the filter, and (  ) is the bias 

term. The activation function ( ( )     (   )) introduces nonlinearity, while the max-

pooling operation reduces spatial dimensions by selecting the maximum value within 

pooling windows as defined as (7). 

          
(   ) window

           (7) 

 

The flattened output is passed through dense layers, and the final layer applies a 

sigmoid activation function to predict the probability of a tsunami as defined as (8). 

 ̂  
 

     
 

(8) 

 

where (   ) is the weighted sum of inputs from the previous layer. The CNN model is 

optimized using the Adam optimizer, and binary cross-entropy loss is used to measure the 

prediction error: 

   
 

 
∑,     (  ̂)  (    )    (    ̂)-

 

   

 

(9) 

 

  where (  ) is the true label and (  ̂) is the predicted probability for the (   )-th sample. 

LSTMs are designed to capture temporal dependencies in sequential data. Each LSTM 

unit employs gates to regulate information flow, where the forget gate determines which 

information to discard, the input gate decides what to store, and the output gate controls 

the visibility of the cell state. The operations are defined as (10) – (15). 

    (              ) (10) 

    (              ) (11) 

    (              ) (12) 

  ̃      (              ) (13) 

                ̃ (14) 

          (  ) (15) 

 

where (  ) is the cell state at time (   ), and (  ) is the hidden state  The LSTM’s final 

hidden state is passed through dense layers for binary classification. GRUs simplifies the 
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LSTM structure by combining the input and forget gates into an update gate, while also 

using a reset gate. The update gate determines the amount of past information to retain, 

calculated as (16) – (19). 

    (              ) (16) 

    (              ) (17) 

  ̃      (        (      )    ) (18) 

   (    )            ̃ (19) 

 

  where (  ) is the hidden state at time (   ). To train and evaluate the models, stratified 

10-fold cross-validation was employed. The dataset was divided into ten subsets, 

maintaining the class distribution within each fold. For each fold, the training and testing 

sets were defined as (20). 

Train  ⋃  
   

  Test     
(20) 

 

where (  ) represents the (   )-th subset. Each model was trained on (Train ) and 

evaluated on (Test ) , ensuring a robust assessment of model generalizability. 

Performance metrics were computed for each fold, including accuracy, precision, recall, 

F1 and ROC-AUC score as presented in (21) – (24) respectively. 

 ccuracy  
TP TN

TP TN  P  N
 

(21) 

Precision  
TP

TP  P
 

(22) 

Recall  
TP

TP  N
 

(23) 

     
Precision  Recall

Precision Recall
 

(24) 

RO   U  ∫ TPR( )
 

 

   PR( ) 
(25) 

 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and 

false negatives, respectively. Each model was optimized using the Adam optimizer with a 

learning rate (           ). Training was performed for a maximum of 50 epoch with a 

batch size of 32. Early stopping was applied to halt training if the validation loss did not 

improve for five consecutive epochs. This rigorous training and evaluation framework 

ensured a robust and reliable comparison of CNN, LSTM, and GRU architectures for 

tsunami prediction. 

 

3. Results and Discussion 
This section presents the results of the experiments conducted to evaluate the 

performance of the proposed deep learning models: Convolutional Neural Networks 

(CNNs), Long Short-Term Memory Networks (LSTMs), and Gated Recurrent Units 

(GRUs) on the tsunami prediction task. As presented in table 1, the performance of each 

model was assessed using stratified 10-fold cross-validation, and the metrics included 

precision, recall, F1-score, accuracy, and ROC-AUC. These metrics provide a 

comprehensive evaluation of the models' ability to classify tsunami-triggering earthquakes 

accurately. The CNN model demonstrated the highest performance among the three 

architectures across most metrics. The average precision for CNN was 0.5987, indicating 

its effectiveness in reducing false positives. The recall was 0.4680, reflecting its moderate 

capability to capture true positives. The F1-score, which balances precision and recall, 

was 0.5213, highlighting its overall strength in classification. The accuracy of CNN was 
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72.5%, the highest among the models, suggesting its general reliability in correctly 

classifying the samples. The ROC-AUC of CNN was 0.7838, demonstrating its ability to 

distinguish between classes effectively. 

The GRU model followed closely behind the CNN, with a precision of 0.5885 and a 

recall of 0.4253. While its precision was comparable to CNN, its recall was lower, 

resulting in a reduced F1-score of 0.4819. The accuracy of the GRU model was 71.7%, 

slightly lower than CNN but still reflecting reasonable classification performance. The 

ROC-AUC of 0.7709 indicates that the GRU effectively differentiates between tsunami 

and non-tsunami events, albeit less consistently than CNN. The LSTM model performed 

the least effectively among the three architectures. It achieved a precision of 0.5465 and a 

recall of 0.3597. The lower recall compared to the other models indicates that LSTM 

struggled to identify true positives effectively. This resulted in an F1-score of 0.4126, 

significantly lower than CNN and GRU. LSTM’s accuracy was 67.9%, reflecting its 

limited reliability in classification tasks. The ROC-AUC of 0.7298 further confirms its 

relatively weaker performance in distinguishing between classes. 

 

Table 1. Performance Results 
Model Precision Recall F1-Score Accuracy ROC-AUC 

CNN 0.598694 0.467992 0.521326 0.725 0.783763 

GRU 0.588524 0.425284 0.481902 0.717 0.770898 

LSTM 0.546463 0.359659 0.412628 0.679 0.729769 

 

Comparatively, CNN outperformed GRU and LSTM across all metrics. The model's 

architecture, which is optimized for capturing spatial relationships, likely contributed to 

its superior performance in analyzing seismic data. GRU, with its ability to model 

sequential patterns efficiently, performed moderately well but exhibited lower recall, 

suggesting difficulty in identifying true positives consistently. LSTM, despite its 

theoretical strength in handling long-term dependencies, showed the weakest 

performance, potentially due to the complexity of the task and the limited temporal 

characteristics in the dataset. The performance differences among the models highlight the 

varying strengths and weaknesses of CNN, GRU, and LSTM architecture. While CNN is 

well-suited for the current dataset due to its focus on spatial feature extraction, GRU 

offers a balance between computational efficiency and accuracy. The LSTM model, 

which excels in long-term sequence modeling, may require further tuning or additional 

temporal features to perform effectively in this context. These results provide valuable 

insights into the applicability of deep learning architectures for tsunami prediction. The 

findings emphasize the importance of model selection based on the characteristics of the 

dataset and the specific requirements of the classification task. Future work could explore 

hybrid models that combine the strengths of CNNs, GRUs, and LSTMs to further enhance 

prediction accuracy and robustness. 

 

4. Conclusion 
This study investigated the application of three advanced deep learning 

architectures: Convolutional Neural Networks (CNNs), Long Short-Term Memory 

Networks (LSTMs), and Gated Recurrent Units (GRUs) for predicting tsunami 

occurrences based on seismic parameters. The results demonstrated the varying 

effectiveness of these models, with CNN achieving the highest overall performance 

across key metrics, followed by GRU and LSTM. Specifically, CNN excelled in 

precision, accuracy, and ROC-AUC, highlighting its strength in spatial pattern 

extraction from seismic data. GRU performed moderately well, balancing 

computational efficiency and predictive accuracy, while LSTM underperformed due 

to its lower recall and F1-score, suggesting challenges in capturing the necessary 
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temporal dependencies within the dataset. Comparative analysis revealed that CNN's 

ability to extract localized features made it the most effective model for this task, 

while GRU offered a viable alternative for scenarios requiring computational 

efficiency. The relatively weaker performance of LSTM indicates the need for either 

further optimization or additional temporal data to leverage its potential fully. These 

findings underscore the importance of aligning model architecture with the specific 

characteristics of the dataset and the classification task. 

This research contributes to the growing body of knowledge in applying deep 

learning techniques for disaster prediction, particularly in the context of tsunami 

events. The systematic evaluation of CNN, LSTM, and GRU provides actionable 

insights into selecting appropriate architectures based on dataset properties and task 

requirements. Moreover, the study highlights the potential of deep learning models 

to enhance early warning systems, enabling more effective disaster response and 

mitigation strategies. Future work should focus on integrating additional features, 

such as real-time oceanographic data, and exploring hybrid models that combine the 

strengths of CNNs, GRUs, and LSTMs. These approaches could further improve 

prediction accuracy, robustness, and interpretability. Furthermore,  expanding the 

scope of the study to include other related tasks, such as predicting the severity of 

tsunamis or estimating their impact, could offer valuable insights for comprehensive 

disaster management systems. By leveraging these advancements, the potential of 

deep learning models in improving the reliability and timeliness of tsunami 

predictions can be fully realized, contributing to the safety and preparedness of 

vulnerable communities worldwide. 
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