
KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

ISSN: 2720-992X

Copyright ⓒ KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

Enhancing Real Time Crowd Counting Using YOLOv8 Integrated

with Microservices Architecture for Dynamic Object Detection in

High Density Environments

Prihandoko
1,*

, Faisal Zufari
2
, Yuhandri

3
, Yuda Irawan

4

1
Department of Information Technology, Universitas Gunadarma, Depok,

Indonesia
2
Department of Information System, Universitas Gunadarma, Depok, Indonesia

3
Department of Computer Science, Faculty of Informatics Engineering,

Universitas Putra Indonesia “YPTK” Padang, Indonesia
4
Department of Computer Science, Universitas Hang Tuah Pekanbaru,

Pekanbaru, Indonesia

E-mail:
1
pri@staff.gunadarma.ac.id,

2
faisalzufari@gmail.com,

3
yuyu@upiyptk.ac.id,

4
yudairawan89@gmail.com

Abstract
This study presents the implementation of the YOLOv8 algorithm to enhance real-time

crowd counting on the ngedatedotid application, which aims to provide accurate crowd

density information at various locations. The proposed model leverages the advanced

capabilities of YOLOv8 in detecting and localizing head-people objects within crowded

environments, even in complex visual conditions. The model achieved a mAP of 85%,

outperforming previous models such as YOLO V8'S (78.3%) and YOLO V7 (81.9%),

demonstrating significant improvements in detection accuracy and localization

capabilities. The custom-trained model further exhibited a detection accuracy of up to

95% in specific scenarios, ensuring reliable and real-time feedback to users regarding

crowd conditions at various locations. By implementing a microservices architecture

integrated with RESTful API communication, the system facilitates efficient data

processing and supports a modular approach in system development, enabling seamless

updates and scalability. This architecture allows for independent deployment of services,

thereby minimizing system downtime and optimizing performance. The integration of

YOLOv8 and the custom-trained model has proven to be effective in enhancing real-time

monitoring and detection of crowd density, making it a suitable solution for diverse

applications that require dynamic and accurate crowd information. The results indicate

that the proposed model and system architecture can provide a robust framework for

real-time crowd management, which is crucial for business owners, event organizers, and

public safety monitoring. Future research should consider exploring newer versions of

YOLO, such as YOLO V9-S, and expanding the dataset to address challenges related to

varying lighting conditions, occlusions, and object orientations. Optimizing these factors

will further improve the model’s accuracy and reliability, setting a new standard for

crowd detection systems in public spaces and enhancing the overall user experience.

Keywords: YOLOv8; Crowd Counting; Microservices Architecture; Object Detection;

Deep Learning

1. Introduction
The ngedatedotid app is a digital platform that provides recommendations for

gathering places such as coffee shops, coworking spaces, and places to break the fast. The

app is designed to meet the needs of Indonesia's younger generation who are looking for

places for social interaction. However, the monolithic architecture-based features are not

able to provide real-time crowd information, so users often do not have a clear picture of

mailto:yudairawan89@gmail.com

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

331

the actual conditions of the location and risk visiting places that are too crowded and not

according to their preferences[1].

Monolithic architectures are prone to dependencies between components, where a fault

in one part can affect the entire application [2]. This dependency makes system

development and maintenance difficult, as well as less resilient to technological changes

and disruptions[3]. When a problem occurs with one component, the entire system is

impacted, degrading performance. For a constantly evolving application like

ngedatedotid, a transition to a more modular and independent microservices architecture

is required[4]. Microservices divide the system into small stand-alone services, making it

easier to develop, and maintain[5]. In contrast to monolithic architectures, microservices

architectures allow each service to have its own responsibilities, be more flexible, and

efficiently handle changes in technology and system scale[6]. This makes microservices

the new standard in modern application development that demands flexibility and

reliability. [7].

This research implements the YOLOv8 algorithm to support a real-time crowd

counting system on the ngedatedotid application. YOLOv8 is a Convolutional Neural

Network (CNN)-based deep learning algorithm capable of detecting objects quickly and

accurately, even in high-density environmental conditions[8]. This algorithm was chosen

for its superiority in overcoming the problem of overlap or occlusion between objects, as

well as its ability to detect and localize head-people objects effectively[9]. The use of

YOLOv8 enables public place managers and business owners to obtain more accurate

visitor count information, which can be optimized to manage resources and ensure public

safety[10]. In addition in another study YOLOv8 was able to provide real-time feedback

that was previously unachievable with a monolithic architecture, making it an ideal

solution in providing a better user experience and being more responsive to changing

conditions[11].

In addition to detection capabilities, YOLOv8 has advantages in terms of efficiency

and flexibility over other algorithms such as Faster R-CNN[12]. The YOLOv8

architecture integrates candidate boxes extraction, feature extraction, and classification in

one network, allowing object detection to be performed in one efficient process[13].

Another study found that detection speed and accuracy make YOLOv8 superior in real-

time situations, even on devices with limited resources[14]. In addition, the algorithm is

able to provide high accuracy results, even in complex environments with different

orientations and lighting variations[15]. The analysis shows that the application of

YOLOv8 to the ngedatedotid application can overcome the weaknesses of conventional

methods that have difficulty detecting objects in high-density conditions, making it the

ultimate solution in a more accurate and responsive crowd detection system.

To support the integration of YOLOv8 in the ngedatedotid application, this research

uses a microservices architecture with RESTful API as the communication standard

between services. The microservices architecture divides the system into small services

that can be developed and deployed independently, thus minimizing the risk of downtime

when a problem occurs in one of the modules. RESTful API integration enables efficient

data communication between the crowd detection service and the frontend application,

supporting scalability and flexibility in system development. The results show that the

combination of YOLOv8 and microservices architecture can overcome the major

bottlenecks of legacy systems, providing novelty value by improving the speed, accuracy,

and flexibility of the system. It is hoped that this research can be a reference for

developers and researchers in creating a resilient, adaptive, and better crowd detection

system in providing real-time crowd information.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

332

2. Research Methodology
The research method applied in this paper is the waterfall model, an approach from the

Software Development Life Cycle (SDLC) [16]. This method includes several steps as

shown in Figure 1 below:

Figure 1. SDLC Approach

The planning stage begins with problem identification and information gathering

related to the YOLOv8 algorithm, the TensorFlow platform, and the use of Roboflow for

the implementation of machine learning models on the back-end of the ngedatedotid

application. Analysis is carried out to determine problem boundaries, objectives, and

research needs. System design includes creating a real-time crowd counting system using

the CRISP-DM framework, as well as creating flowcharts and UML. Implementation is

done with data preparation, model training, model export, and integration of crowd

counting services into the microservices architecture. The final stage is testing using black

box testing to ensure all functions work according to specifications.

High Level Design (HLD) includes a description of the entire system along with its

database and a brief description of the services, systems, platforms used, and relationships

between modules. The HLD design can be seen in Figure 2 below:

Figure 2. High Level Design

In Figure 2 is an overview of the High Level Design architecture of the ngedatedotid

application, there are 4 services, namely, services reviews that function to serve requests

about reviews of a place, services location that functions to serve requests about locations,

auth services and users that function to serve authentication and authorization requests,

services facility and spot that serve requests for places and facilities, services media that

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

333

function to serve video requests, and images, and finally crowd counting services that

function to count crowds from a place in realtime.

The method used in designing this model is CRISP-DM, which is a framework that

can turn business problems into data mining tasks and allow the implementation of data

mining projects without being tied to the application area and technology used. There are

several stages involved in building a deep learning model using the CRISP-DM

framework. To make it easier to understand these stages, it can be seen in the flowchart in

Figure 3.

Figure 3. Flowchart for Model Creation

Figure 3 shows the flowchart of deep learning modeling using the YOLOv8 algorithm.

The initial stage is data collection in the form of similar crowd images, followed by an

annotation process to label the images. The annotated data is then divided into three parts:

train, validation, and test for training, validation, and model testing. After data division,

preprocessing is done by resizing the image to 640x640 pixels, followed by dataset

generation. Next, the model training process is performed to generate metrics such as

Precision, Recall, mAP50, mAP50-90, result graph, and F1-curve graph. If the training

results are not optimal, model evaluation is performed by adding data or adjusting training

parameters. After achieving satisfactory results, the model is exported into a suitable

format, such as Tensorflow (TFJS), for implementation on a web platform to run

efficiently and optimally. The flowchart in Figure 4 below shows how the model created

with the YOLO algorithm works in detecting objects.

Figure 4. Flowchart of Using the YOLO Model

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

334

Figure 4 is a flowchart of the object detection process with the YOLOv8 algorithm. In

this case, YOLOv8 will get the bounding box presence value and its confidence score.

Confidence score is the probability value of the existence of an object in the bounding

box. After the bounding box is mapped based on the resulting probability value, YOLO

will predict the class of the object contained in the bounding box along with its

probability, thus forming a class probability map. Of the many bounding boxes generated,

to get a bounding box with a high probability, then of all the prediction results, only those

that exceed the threshold will be displayed. If there is duplication in the bounding box,

then Non-max Suppresion (NMS) will play a role to eliminate the duplication.

3. Results and Discussion

3.1. Data Understanding

At this stage collect and analyze the quality of the data to be used. The raw data used

to train the crowd are 200 images of human crowds wearing hats, hijabs, and masks. The

image data was taken directly by the researcher using a smartphone. The identified data

elements are created using roboflow. If more data is obtained, the results of accuracy will

also be maximized.

3.2. Data Preparation

The data processing stage includes several steps, starting from the annotation process

where labels are applied to the images using a bounding box around the head object via

the Roboflow platform. The dataset was then split into three subsets: train (133 images),

valid (18 images), and test (10 images) to organize the data used in training and testing

the YOLOv8 model. A resize step is performed to homogenize the image dimensions to

640x640 pixels, which helps with computational efficiency and processing consistency.

The Auto Orient feature is applied to adjust the orientation of objects in the image, while

the Flip Horizontal augmentation is used to add variety to the dataset by mirroring the

image horizontally. In addition, the image is converted to grayscale to simplify the pixel

values for analysis. All these stages aim to improve the quality of the dataset and ensure

the model can accurately recognize objects under varying environmental conditions.

3.3. Modelling

In this modeling step the main focus is on developing and training an object detection

model capable of identifying humans. In this research, the YOLOv8 architecture and the

yolov8s.pt model are used as the basis for training. The model is built with the aim of

recognizing objects. This process involves a model training stage utilizing a dataset that

has undergone a number of pre-processing steps, including augmentation and size

adjustment. The choice of using the yolov8s.pt model provides sufficient ability to detect

and recognize objects in various positions and scales. Here is Figure 5 on inference with

the custom model:

Figure 5. Inference Custom Model

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

335

In figure 5 the program starts by specifying the task to be performed by the model. In

this case, the task is crowd detection. Then, determine the predict model, determine the

location of the model to be evaluated by naming best.pt which is the best model,

determine the confidence threshold of 0.25, determine the data source for prediction as

images, and determine the storage of prediction results. Figure 6 below shows a sequence

diagram that illustrates the process flow to view location details (spots) and the

implementation of real-time crowd detection features.

Figure 6. Sequence Diagram

The diagram above illustrates the interaction flow between the front-end and back-end

of the system connected with machine learning. The process starts when a user clicks on a

spot detail on the front-end, which sends a request to the back-end to retrieve information

from the database. The results are sent back to the front-end and stored in the Realtime

Firestore to initiate real-time crowd counting. The data is then passed to the Back-End

Machine Learning component through the Message Broker, where the Deep Learning

model performs object detection and calculates the crowd count. The detection results are

sent back to the Realtime Firestore for display to the user, ensuring the crowd information

is always up-to-date and accurate.

3.4. Evaluation

The evaluation process is used to see and measure the performance of the model in

detecting objects. In this study, the authors used three evaluation methods, namely

Confusion Matrix, mAP (Mean Average Precision) Metric, and using additional custom

data. Here is Figure 7 about confusion matrix visualization:

Figure 7. Confusion Matrix

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

336

Based on the matrix image above, the performance of the model can be seen from

several key elements. True Positives show that the model successfully detected the head-

people object correctly in 116 samples, while True Negatives show that the model also

detected the background correctly in 88 samples. However, there were 58 samples of

False Positives, where the model misclassified the background as head-people, indicating

a detection error. The model did not record any False Negatives, meaning that the model

was able to recognize all head-people objects well. Although the detection rate of head-

people is quite good, the high number of False Positives indicates that the model is too

sensitive to some areas that should be empty. Therefore, parameter adjustments or

additional training data are required to improve accuracy and reduce detection errors.

Further evaluation by visualizing it in the mAP graph presented in Figure 8.

Figure 8. Evaluation results using mAP

Figure 8 above shows the results of training the model with various evaluation metrics.

In the train box loss graph, there is a decrease from the initial value of 3.0 to about 1.0 at

the end of training. Train classification loss also decreased significantly from a value of

6.0 to about 0.8. Meanwhile, the train distribution focal loss (DFL) decreased from an

initial value of 1.5 to 0.4, indicating that the model is getting better at detecting objects

that are difficult to recognize. The validation loss graph also shows a significant decrease,

with validation box loss dropping from 3.25 to 1.5, validation classification loss dropping

from 20.0 to 1.0, and validation DFL loss dropping from 1.6 to 0.4. The precision metrics

graph increased to reach around 0.80, and recall reached the highest value of around 0.7.

Meanwhile, mAP50 increased to about 0.85, and mAP50-95 reached about 0.3. These

values show the improved performance of the model in detecting and classifying objects

with high accuracy at various thresholds.

Furthermore an evaluation is carried out using a custom method which includes the

process of prediction custom model, validate custom model, and inference with custom

model. This evaluation aims to measure the performance of the model in predicting

objects with varying accuracy results based on adjusted parameters. The evaluation results

show that this custom model is able to provide prediction results with different levels of

accuracy, which reflects the model's ability to recognize and classify objects more

specifically according to research needs. The prediction results of the custom model can

be seen in Figure 9 below:

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

337

Figure 9. Custom Model Prediction Results

The figure above shows the prediction results of the custom model for detecting head-

people objects in outdoor environments. The model successfully identifies the position of

a human head with a bounding box and varying confidence values (0.3 to 0.9). Although

the model performs well in dense and complex areas, there are some false positives on

objects with low confidence values, which are caused by the similarity between the head

object and the background. These results show that the model is sufficiently accurate, but

still needs improvement to increase accuracy in areas with high visual similarity. The

experimental test results were carried out with 4 different images with the aim of seeing

the success rate of the model in detecting and classifying. The test results can be seen in

Figure 10 below:

Figure 10. Model Test Results

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

338

The Figure 10 displays the results of the custom model detection test on four outdoor

scenarios that show successful detection of head-people objects. This detection success is

influenced by several factors, such as the position of the object in the image, high image

resolution, and adequate lighting levels. In images where the distance between objects is

too close, the model has difficulty in detecting objects accurately due to overlapping

bounding boxes. Although the model is able to recognize objects with varying confidence,

the detection results show that areas with optimal lighting and object spacing provide

better detection accuracy compared to areas with visual distractions or objects that are

close together. Table 1 provides a comparison with previous research:

Table 1. Comparison with previous research
No Researcher Model mAP

1 M. Muthumari[17] YOLO V2 78%

2 Rui Shi [18] YOLO V3 83.4%

3 Alexey Bochkovskiy [19] YOLO V4 74.3%

4 Xin Zhang [20] YOLO V5 80.88%

5 Hoang Tran Ngoc[21] YOLO V5 82.1%

6 Tian-Hao Wu [22] YOLO V5’S 83.36%

7 Yang Wang [23] YOLO V7 81.9%

8 Ade Syahputra [24] YOLO V8’S 78.3%

9 Proposed Model 85%

The table above shows that the proposed model achieves an mAP value of 85%, which

is higher than the previous versions of YOLO models such as YOLO V7 (81.9%), YOLO

V2 (78%), and YOLO V5 (82.1%). The model also outperforms YOLO V3 (83.4%) and

YOLO V4 (74.3%), which shows an improvement in object detection and classification

accuracy. This performance improvement indicates that the proposed model has a

competitive advantage in more precise object detection over previous versions of YOLO.

Furthermore, testing of the ngedatedotid application is carried out to evaluate system

performance after the application of the YOLOv8 algorithm that has been integrated into

the microservices architecture. The testing process includes validation of the crowd

detection feature and real-time data processing performed on the application backend.

Testing is done using black-box testing to ensure each service functions according to

specifications without checking the internal code. The results obtained from blackbox

testing are shown in Table 2 below:

Table 2. Input File Testing

No File Input
Expected

results
Output

Testing

Results

1 Model.json Insert files in the

model folder on the

back-end

Load model

configuration

File

executable

Success

2 serviceAccount

Key.json

Insert files in the

firebase folder on the

back-end

Load firebase

configuration

File

executable

Success

From the black box testing table testing input files, it can be concluded that this

application is running well and all input files run as expected and successfully run the

input files. The following is table 3 which describes the function testing of the results of

the integration of YOLO V8 with microservices architecture in ngedatedotid backend.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

339

Table 3. Function Testing

No Fungsi Input Expected results Output
Testing

Results

1 Extraction Videos with objects Generate images
Image per

second
Success

2 Detection
Images that contain

objects

Generates

coordinates and

accuracy

Object

detected
Success

3 Drawing
Images that contain

objects

Generate

bounding box

with class label

and accuracy

value

Bounding

box

detected

Success

4 Counting Class and accuracy
Display the total

calculation value

Amount

increased
Success

Table 3 above shows the test results of the integration of the YOLOv8 algorithm with

microservices architecture on the backend of the ngedatedotid application which includes

four main functions, namely extraction, detection, drawing, and counting. In the

extraction function, the model successfully processes videos containing objects and

generates images per second. The detection function shows that the model can detect the

coordinates and accuracy of objects in the image well. Next, the drawing function

displays the bounding box along with the class label and accuracy value of the detected

object. Finally, the counting function successfully displays the total count of objects in the

image with results according to the accuracy of the model. All test functions show

successful results, indicating that the crowd detection and counting system using

YOLOv8 has been well integrated into the backend of the ngedatedotid application and

operates according to the expected specifications.

The next test is to test the results of human detection, classification, and calculation. At

this stage, the results of the three main processes of this web application are tested,

namely detecting, classifying, and counting the number of humans using the YOLOv8

algorithm and the object calculation process takes place when humans are detected. The

results of this experiment use 1 video extracted 1 second per frame with a duration of 1

minute 49 seconds which produces 109 images to see the success rate of this application

in detecting, classifying, and counting the number of humans in realtime. The percentage

of success rate is calculated using the following formula.

 % (1)

Where k = percentage of success rate, n = number of successful trial data, m = number of

observation data. The following figure 11 is the result of the detection, classification, and

calculation of the 109 images.

Figure 11. Comparison of Manual and Automatic calculation

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

340

The figure above shows a comparison of the number of people count results between

the manual and automatic methods at 109 frames per second. The manual calculation

(orange line) has a higher variation, with the number of detections ranging from 10 to 35

objects per frame. Meanwhile, the automatic calculation (blue line) has a lower and more

stable number of detections, ranging from 5 to 20 objects per frame. This significant

difference indicates that manual detection is more sensitive to changes in the number of

objects, while the automatic model still needs to be improved to achieve accuracy close to

the manual results, especially on frames with high object density. This proves that this

application works well and as desired by the researcher. The following table 4 shows the

results of the human detection, classification, and calculation of the number of people:

Table 4. Results of Detection, Classification, and calculation of the number of people test

No Image

Amount

Calculated in

the App

Total Manual

Calculation

Percentage of

Success

1

17 19 89%

2

18 19 95%

Table 4 above shows the results of detection, classification, and headcount tests

conducted using the app as well as the manual method. In the first image, the app

successfully detected 17 people out of a total of 19 people counted manually, with a

success percentage of 89%. In the second image, the app successfully detected 18 out of

19 people, with a higher success percentage of 95%. These results show that the app has a

fairly good detection capability and is close to the manual calculation, although there is a

small difference in the number of detections. This high percentage of success indicates

that the detection model has worked optimally in identifying “head-people” objects under

stable environmental conditions. In future research, we can consider using YOLO V9-S

which has been further developed so as to improve the accuracy in moving object

detection[25].

4. Conclusion
 The conclusion of this study shows that the application of the YOLOv8 algorithm to

the ngedatedotid application has significantly improved the accuracy of crowd detection.

The proposed model achieves a mean Average Precision (mAP) value of 85%, higher

than previous versions of YOLO models such as YOLO V8'S (78.3%) and YOLO V7

(81.9%). This performance improvement demonstrates the superiority of the YOLOv8

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

341

integration in detecting people objects in high-density environments, despite complex

visual distractions. In addition, testing of the custom model shows detection success of up

to 95% in certain scenarios, with high accuracy in identifying objects and providing real-

time crowd information. This proves that the proposed model is superior to previous

conventional models. This research also emphasizes the importance of using

microservices architecture integrated with RESTful APIs to facilitate communication

between services, thereby increasing the flexibility and efficiency of data processing in

applications. The combination of YOLOv8, custom model, and microservices architecture

proved to be able to produce a system that is more responsive and adaptive to changing

environmental conditions. For further research, it is recommended to explore the latest

YOLO versions such as YOLO V9-S, as well as expand the variety of datasets to

overcome challenges in lighting conditions and more complex variations in object

positions. Optimization of model training and testing parameters in real-world

environments also needs to be done to ensure the model can achieve better performance in

real-world scenarios.

References
[1] K. Gos and W. Zabierowski, “The Comparison of Microservice and Monolithic

Architecture,” IEEE Access, vol. 1109, no. June, pp. 150–153, 2020, doi:

10.1109/MEMSTECH49584.2020.9109514.

[2] Y. Abgaz et al., “Decomposition of Monolith Applications Into Microservices

Architectures : A Systematic Review,” IEEE Trans. Softw. Eng., vol. 49, no. 8, pp.

4213–4242, 2023.

[3] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From

Monolithic Systems to Microservices: A Comparative Study of Performance,” Appl.

Sci., vol. 10, no. 17, pp. 1–35, 2020, doi: 10.3390/app10175797.

[4] G. Liu, B. Huang, and Z. Liang, “Microservices : architecture , container , and

challenges,” IEEE Access, vol. 1109, no. December, pp. 629–635, 2020, doi:

10.1109/QRS-C51114.2020.00107.

[5] N. Singh et al., “Load balancing and service discovery using Docker Swarm for

microservice based big data applications,” J. Cloud Comput., vol. 12, no. 1, p. 4, 2023,

doi: 10.1186/s13677-022-00358-7.

[6] S. Li et al., “Understanding and Addressing Quality Attributes of Microservices

Architecture : A Systematic Literature Review,” Inf. Softw. Technol., vol. 131, no.

March, pp. 1–30, 2020, doi: 10.1016/j.infsof.2020.106449.

[7] S. Ben Atitallah, M. Driss, and H. Ben Ghzela, “Microservices for Data Analytics in

IoT Applications: Current Solutions, Open Challenges, and Future Research

Directions,” Procedia Comput. Sci., vol. 207, no. June, pp. 3938–3947, 2022, doi:

https://doi.org/10.1016/j.procs.2022.09.456.

[8] Z. Khan, H. Liu, Y. Shen, and X. Zeng, “Deep learning improved YOLOv8 algorithm:

Real-time precise instance segmentation of crown region orchard canopies in natural

environment,” Comput. Electron. Agric., vol. 224, no. September, p. 109168, 2024,

doi: https://doi.org/10.1016/j.compag.2024.109168.

[9] B. Lin, “Safety Helmet Detection Based on Improved YOLOv8,” IEEE Access, vol.

12, no. February, pp. 28260–28272, 2024, doi: 10.1109/ACCESS.2024.3368161.

[10] M. Safran, A. Alajmi, and S. Alfarhood, “Efficient Multistage License Plate Detection

and Recognition Using YOLOv8 and CNN for Smart Parking Systems,” J. Sensors,

vol. 2024, no. 1, p. 4917097, 2024, doi: https://doi.org/10.1155/2024/4917097.

[11] J. Farooq, M. Muaz, K. Khan Jadoon, N. Aafaq, and M. K. A. Khan, “An improved

YOLOv8 for foreign object debris detection with optimized architecture for small

objects,” Multimed. Tools Appl., vol. 83, no. 21, pp. 60921–60947, 2024, doi:

10.1007/s11042-023-17838-w.

[12] R. Sapkota, D. Ahmed, and M. Karkee, “Comparing YOLOv8 and Mask R-CNN for

instance segmentation in complex orchard environments,” Artif. Intell. Agric., vol. 13,

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 6, No. 1, Januari (2025), pp. 330-342

342

no. September, pp. 84–99, 2024, doi: https://doi.org/10.1016/j.aiia.2024.07.001.

[13] G. Yang, J. Wang, Z. Nie, H. Yang, and S. Yu, “A Lightweight YOLOv8 Tomato

Detection Algorithm Combining Feature Enhancement and Attention,” Agronomy, vol.

13, no. 7, pp. 1–14, 2023, doi: 10.3390/agronomy13071824.

[14] M. Talib, A. H. Y. Al-Noori, and J. Suad, “YOLOv8-CAB: Improved YOLOv8 for

Real-time Object Detection,” Karbala Int. J. Mod. Sci., vol. 10, no. 1, pp. 56–68,

2024, doi: 10.33640/2405-609X.3339.

[15] G. Oh and S. Lim, “One-Stage Brake Light Status Detection Based on YOLOv8,”

Sensors, vol. 23, no. 17, pp. 1–18, 2023, doi: 10.3390/s23177436.

[16] Y. Irawan, “Decision Support System For Employee Bonus Determination With Web-

Based Simple Additive Weighting (SAW) Method In PT. Mayatama Solusindo,” J.
Appl. Eng. Technol. Sci., vol. 2, no. 1, pp. 7–13, 2020, doi:

https://doi.org/10.37385/jaets.v2i1.162.

[17] M. Muthumari, V. Akash, K. P. Charan, P. Akhil, V. Deepak, and S. P. Praveen,

“Smart and Multi-Way Attendance Tracking System Using an Image-Processing

Technique,” in 2022 4th International Conference on Smart Systems and Inventive
Technology (ICSSIT), 2022, pp. 1805–1812. doi:

10.1109/ICSSIT53264.2022.9716349.

[18] R. Shi, T. Li, and Y. Yamaguchi, “An attribution-based pruning method for real-time

mango detection with YOLO network,” Comput. Electron. Agric., vol. 169, no.

February, p. 105214, 2020, doi: https://doi.org/10.1016/j.compag.2020.105214.

[19] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and

Accuracy of Object Detection,” arXiv, vol. 2004, no. Apr, pp. 1–17, 2020, doi:

https://doi.org/10.48550/arXiv.2004.10934.

[20] X. Zhang et al., “Inspection and Classification System of Photovoltaic Module Defects

Based on UAV and Thermal Imaging,” in 2022 7th International Conference on

Power and Renewable Energy (ICPRE), 2022, pp. 905–909. doi:

10.1109/ICPRE55555.2022.9960506.

[21] H. T. Ngoc, K. H. Nguyen, H. K. Hua, H. V. N. Nguyen, and L. Da Quach,

“Optimizing YOLO Performance for Traffic Light Detection and End-to-End Steering

Control for Autonomous Vehicles in Gazebo-ROS2,” Int. J. Adv. Comput. Sci. Appl.,

vol. 14, no. 7, pp. 475–484, 2023, doi: 10.14569/IJACSA.2023.0140752.

[22] T. H. Wu, T. W. Wang, and Y. Q. Liu, “Real-Time Vehicle and Distance Detection

Based on Improved Yolo v5 Network,” 2021 3rd World Symp. Artif. Intell. WSAI

2021, vol. 978, no. June, pp. 24–28, 2021, doi: 10.1109/WSAI51899.2021.9486316.

[23] Y. Wang, H. Wang, and Z. Xin, “Efficient Detection Model of Steel Strip Surface

Defects Based on YOLO-V7,” IEEE Access, vol. 10, no. November, pp. 133936–

133944, 2022, doi: 10.1109/ACCESS.2022.3230894.

[24] A. Syahputra, Yaddarabullah, M. F. Azhary, A. B. A. Rahman, and A. Saad,

“Occupancy Measurement in Under-Actuated Zones: YOLO-based Deep Learning

Approach,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, pp. 757–769, 2024, doi:

10.14569/IJACSA.2024.0150277.

[25] A. Febriani, R. Wahyuni, Y. Irawan, and R. Melyanti, “Improved Hybrid Machine and

Deep Learning Model for Optimization of Smart Egg Incubator,” J. Appl. Data Sci.,

vol. 5, no. 3, pp. 1052–1068, 2024.

