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Abstract 
This study presents the implementation of the YOLOv8 algorithm to enhance real-time 

crowd counting on the ngedatedotid application, which aims to provide accurate crowd 

density information at various locations. The proposed model leverages the advanced 

capabilities of YOLOv8 in detecting and localizing head-people objects within crowded 

environments, even in complex visual conditions. The model achieved a mAP of 85%, 

outperforming previous models such as YOLO V8'S (78.3%) and YOLO V7 (81.9%), 

demonstrating significant improvements in detection accuracy and localization 

capabilities. The custom-trained model further exhibited a detection accuracy of up to 

95% in specific scenarios, ensuring reliable and real-time feedback to users regarding 

crowd conditions at various locations. By implementing a microservices architecture 

integrated with RESTful API communication, the system facilitates efficient data 

processing and supports a modular approach in system development, enabling seamless 

updates and scalability. This architecture allows for independent deployment of services, 

thereby minimizing system downtime and optimizing performance. The integration of 

YOLOv8 and the custom-trained model has proven to be effective in enhancing real-time 

monitoring and detection of crowd density, making it a suitable solution for diverse 

applications that require dynamic and accurate crowd information. The results indicate 

that the proposed model and system architecture can provide a robust framework for 

real-time crowd management, which is crucial for business owners, event organizers, and 

public safety monitoring. Future research should consider exploring newer versions of 

YOLO, such as YOLO V9-S, and expanding the dataset to address challenges related to 

varying lighting conditions, occlusions, and object orientations. Optimizing these factors 

will further improve the model’s accuracy and reliability, setting a new standard for 

crowd detection systems in public spaces and enhancing the overall user experience. 

 

Keywords: YOLOv8; Crowd Counting; Microservices Architecture; Object Detection; 

Deep Learning 

 

1. Introduction 
The ngedatedotid app is a digital platform that provides recommendations for 

gathering places such as coffee shops, coworking spaces, and places to break the fast. The 

app is designed to meet the needs of Indonesia's younger generation who are looking for 

places for social interaction. However, the monolithic architecture-based features are not 

able to provide real-time crowd information, so users often do not have a clear picture of 
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the actual conditions of the location and risk visiting places that are too crowded and not 

according to their preferences[1]. 

Monolithic architectures are prone to dependencies between components, where a fault 

in one part can affect the entire application [2]. This dependency makes system 

development and maintenance difficult, as well as less resilient to technological changes 

and disruptions[3]. When a problem occurs with one component, the entire system is 

impacted, degrading performance. For a constantly evolving application like 

ngedatedotid, a transition to a more modular and independent microservices architecture 

is required[4]. Microservices divide the system into small stand-alone services, making it 

easier to develop, and maintain[5]. In contrast to monolithic architectures, microservices 

architectures allow each service to have its own responsibilities, be more flexible, and 

efficiently handle changes in technology and system scale[6]. This makes microservices 

the new standard in modern application development that demands flexibility and 

reliability. [7]. 

This research implements the YOLOv8 algorithm to support a real-time crowd 

counting system on the ngedatedotid application. YOLOv8 is a Convolutional Neural 

Network (CNN)-based deep learning algorithm capable of detecting objects quickly and 

accurately, even in high-density environmental conditions[8]. This algorithm was chosen 

for its superiority in overcoming the problem of overlap or occlusion between objects, as 

well as its ability to detect and localize head-people objects effectively[9]. The use of 

YOLOv8 enables public place managers and business owners to obtain more accurate 

visitor count information, which can be optimized to manage resources and ensure public 

safety[10]. In addition in another study YOLOv8 was able to provide real-time feedback 

that was previously unachievable with a monolithic architecture, making it an ideal 

solution in providing a better user experience and being more responsive to changing 

conditions[11]. 

In addition to detection capabilities, YOLOv8 has advantages in terms of efficiency 

and flexibility over other algorithms such as Faster R-CNN[12]. The YOLOv8 

architecture integrates candidate boxes extraction, feature extraction, and classification in 

one network, allowing object detection to be performed in one efficient process[13]. 

Another study found that detection speed and accuracy make YOLOv8 superior in real-

time situations, even on devices with limited resources[14]. In addition, the algorithm is 

able to provide high accuracy results, even in complex environments with different 

orientations and lighting variations[15]. The analysis shows that the application of 

YOLOv8 to the ngedatedotid application can overcome the weaknesses of conventional 

methods that have difficulty detecting objects in high-density conditions, making it the 

ultimate solution in a more accurate and responsive crowd detection system. 

To support the integration of YOLOv8 in the ngedatedotid application, this research 

uses a microservices architecture with RESTful API as the communication standard 

between services. The microservices architecture divides the system into small services 

that can be developed and deployed independently, thus minimizing the risk of downtime 

when a problem occurs in one of the modules. RESTful API integration enables efficient 

data communication between the crowd detection service and the frontend application, 

supporting scalability and flexibility in system development. The results show that the 

combination of YOLOv8 and microservices architecture can overcome the major 

bottlenecks of legacy systems, providing novelty value by improving the speed, accuracy, 

and flexibility of the system. It is hoped that this research can be a reference for 

developers and researchers in creating a resilient, adaptive, and better crowd detection 

system in providing real-time crowd information. 
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2. Research Methodology 
The research method applied in this paper is the waterfall model, an approach from the 

Software Development Life Cycle (SDLC) [16]. This method includes several steps as 

shown in Figure 1 below: 

 
Figure 1. SDLC Approach 

 

The planning stage begins with problem identification and information gathering 

related to the YOLOv8 algorithm, the TensorFlow platform, and the use of Roboflow for 

the implementation of machine learning models on the back-end of the ngedatedotid 

application. Analysis is carried out to determine problem boundaries, objectives, and 

research needs. System design includes creating a real-time crowd counting system using 

the CRISP-DM framework, as well as creating flowcharts and UML. Implementation is 

done with data preparation, model training, model export, and integration of crowd 

counting services into the microservices architecture. The final stage is testing using black 

box testing to ensure all functions work according to specifications. 

High Level Design (HLD) includes a description of the entire system along with its 

database and a brief description of the services, systems, platforms used, and relationships 

between modules. The HLD design can be seen in Figure 2 below: 

 

 
Figure 2. High Level Design 

 

In Figure 2 is an overview of the High Level Design architecture of the ngedatedotid 

application, there are 4 services, namely, services reviews that function to serve requests 

about reviews of a place, services location that functions to serve requests about locations, 

auth services and users that function to serve authentication and authorization requests, 

services facility and spot that serve requests for places and facilities, services media that 
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function to serve video requests, and images, and finally crowd counting services that 

function to count crowds from a place in realtime. 

The method used in designing this model is CRISP-DM, which is a framework that 

can turn business problems into data mining tasks and allow the implementation of data 

mining projects without being tied to the application area and technology used. There are 

several stages involved in building a deep learning model using the CRISP-DM 

framework. To make it easier to understand these stages, it can be seen in the flowchart in 

Figure 3. 

 
Figure 3. Flowchart for Model Creation 

 

Figure 3 shows the flowchart of deep learning modeling using the YOLOv8 algorithm. 

The initial stage is data collection in the form of similar crowd images, followed by an 

annotation process to label the images. The annotated data is then divided into three parts: 

train, validation, and test for training, validation, and model testing. After data division, 

preprocessing is done by resizing the image to 640x640 pixels, followed by dataset 

generation. Next, the model training process is performed to generate metrics such as 

Precision, Recall, mAP50, mAP50-90, result graph, and F1-curve graph. If the training 

results are not optimal, model evaluation is performed by adding data or adjusting training 

parameters. After achieving satisfactory results, the model is exported into a suitable 

format, such as Tensorflow (TFJS), for implementation on a web platform to run 

efficiently and optimally. The flowchart in Figure 4 below shows how the model created 

with the YOLO algorithm works in detecting objects. 

 

 
Figure 4. Flowchart of Using the YOLO Model 
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Figure 4 is a flowchart of the object detection process with the YOLOv8 algorithm. In 

this case, YOLOv8 will get the bounding box presence value and its confidence score. 

Confidence score is the probability value of the existence of an object in the bounding 

box. After the bounding box is mapped based on the resulting probability value, YOLO 

will predict the class of the object contained in the bounding box along with its 

probability, thus forming a class probability map. Of the many bounding boxes generated, 

to get a bounding box with a high probability, then of all the prediction results, only those 

that exceed the threshold will be displayed. If there is duplication in the bounding box, 

then Non-max Suppresion (NMS) will play a role to eliminate the duplication. 

 

3. Results and Discussion 

3.1. Data Understanding 

At this stage collect and analyze the quality of the data to be used. The raw data used 

to train the crowd are 200 images of human crowds wearing hats, hijabs, and masks. The 

image data was taken directly by the researcher using a smartphone. The identified data 

elements are created using roboflow. If more data is obtained, the results of accuracy will 

also be maximized. 

 

3.2. Data Preparation 

The data processing stage includes several steps, starting from the annotation process 

where labels are applied to the images using a bounding box around the head object via 

the Roboflow platform. The dataset was then split into three subsets: train (133 images), 

valid (18 images), and test (10 images) to organize the data used in training and testing 

the YOLOv8 model. A resize step is performed to homogenize the image dimensions to 

640x640 pixels, which helps with computational efficiency and processing consistency. 

The Auto Orient feature is applied to adjust the orientation of objects in the image, while 

the Flip Horizontal augmentation is used to add variety to the dataset by mirroring the 

image horizontally. In addition, the image is converted to grayscale to simplify the pixel 

values for analysis. All these stages aim to improve the quality of the dataset and ensure 

the model can accurately recognize objects under varying environmental conditions. 

 

3.3. Modelling 

In this modeling step the main focus is on developing and training an object detection 

model capable of identifying humans. In this research, the YOLOv8 architecture and the 

yolov8s.pt model are used as the basis for training. The model is built with the aim of 

recognizing objects. This process involves a model training stage utilizing a dataset that 

has undergone a number of pre-processing steps, including augmentation and size 

adjustment. The choice of using the yolov8s.pt model provides sufficient ability to detect 

and recognize objects in various positions and scales. Here is Figure 5 on inference with 

the custom model: 

 
Figure 5. Inference Custom Model 
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In figure 5 the program starts by specifying the task to be performed by the model. In 

this case, the task is crowd detection. Then, determine the predict model, determine the 

location of the model to be evaluated by naming best.pt which is the best model, 

determine the confidence threshold of 0.25, determine the data source for prediction as 

images, and determine the storage of prediction results. Figure 6 below shows a sequence 

diagram that illustrates the process flow to view location details (spots) and the 

implementation of real-time crowd detection features. 

 

 
Figure 6. Sequence Diagram 

 

The diagram above illustrates the interaction flow between the front-end and back-end 

of the system connected with machine learning. The process starts when a user clicks on a 

spot detail on the front-end, which sends a request to the back-end to retrieve information 

from the database. The results are sent back to the front-end and stored in the Realtime 

Firestore to initiate real-time crowd counting. The data is then passed to the Back-End 

Machine Learning component through the Message Broker, where the Deep Learning 

model performs object detection and calculates the crowd count. The detection results are 

sent back to the Realtime Firestore for display to the user, ensuring the crowd information 

is always up-to-date and accurate. 

 

3.4. Evaluation 

The evaluation process is used to see and measure the performance of the model in 

detecting objects. In this study, the authors used three evaluation methods, namely 

Confusion Matrix, mAP (Mean Average Precision) Metric, and using additional custom 

data. Here is Figure 7 about confusion matrix visualization: 

 

 
Figure 7. Confusion Matrix 
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Based on the matrix image above, the performance of the model can be seen from 

several key elements. True Positives show that the model successfully detected the head-

people object correctly in 116 samples, while True Negatives show that the model also 

detected the background correctly in 88 samples. However, there were 58 samples of 

False Positives, where the model misclassified the background as head-people, indicating 

a detection error. The model did not record any False Negatives, meaning that the model 

was able to recognize all head-people objects well. Although the detection rate of head-

people is quite good, the high number of False Positives indicates that the model is too 

sensitive to some areas that should be empty. Therefore, parameter adjustments or 

additional training data are required to improve accuracy and reduce detection errors. 

Further evaluation by visualizing it in the mAP graph presented in Figure 8. 

 

 
Figure 8. Evaluation results using mAP 

 

Figure 8 above shows the results of training the model with various evaluation metrics. 

In the train box loss graph, there is a decrease from the initial value of 3.0 to about 1.0 at 

the end of training. Train classification loss also decreased significantly from a value of 

6.0 to about 0.8. Meanwhile, the train distribution focal loss (DFL) decreased from an 

initial value of 1.5 to 0.4, indicating that the model is getting better at detecting objects 

that are difficult to recognize. The validation loss graph also shows a significant decrease, 

with validation box loss dropping from 3.25 to 1.5, validation classification loss dropping 

from 20.0 to 1.0, and validation DFL loss dropping from 1.6 to 0.4. The precision metrics 

graph increased to reach around 0.80, and recall reached the highest value of around 0.7. 

Meanwhile, mAP50 increased to about 0.85, and mAP50-95 reached about 0.3. These 

values show the improved performance of the model in detecting and classifying objects 

with high accuracy at various thresholds. 

Furthermore an evaluation is carried out using a custom method which includes the 

process of prediction custom model, validate custom model, and inference with custom 

model. This evaluation aims to measure the performance of the model in predicting 

objects with varying accuracy results based on adjusted parameters. The evaluation results 

show that this custom model is able to provide prediction results with different levels of 

accuracy, which reflects the model's ability to recognize and classify objects more 

specifically according to research needs. The prediction results of the custom model can 

be seen in Figure 9 below: 
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Figure 9. Custom Model Prediction Results 

 

The figure above shows the prediction results of the custom model for detecting head-

people objects in outdoor environments. The model successfully identifies the position of 

a human head with a bounding box and varying confidence values (0.3 to 0.9). Although 

the model performs well in dense and complex areas, there are some false positives on 

objects with low confidence values, which are caused by the similarity between the head 

object and the background. These results show that the model is sufficiently accurate, but 

still needs improvement to increase accuracy in areas with high visual similarity. The 

experimental test results were carried out with 4 different images with the aim of seeing 

the success rate of the model in detecting and classifying. The test results can be seen in 

Figure 10 below: 

 

 
Figure 10. Model Test Results 
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The Figure 10 displays the results of the custom model detection test on four outdoor 

scenarios that show successful detection of head-people objects. This detection success is 

influenced by several factors, such as the position of the object in the image, high image 

resolution, and adequate lighting levels. In images where the distance between objects is 

too close, the model has difficulty in detecting objects accurately due to overlapping 

bounding boxes. Although the model is able to recognize objects with varying confidence, 

the detection results show that areas with optimal lighting and object spacing provide 

better detection accuracy compared to areas with visual distractions or objects that are 

close together. Table 1 provides a comparison with previous research: 

 

Table 1. Comparison with previous research 
No Researcher Model mAP 

1 M. Muthumari[17] YOLO V2 78% 

2 Rui Shi [18] YOLO V3 83.4% 

3 Alexey Bochkovskiy [19] YOLO V4 74.3% 

4 Xin Zhang [20] YOLO V5 80.88% 

5 Hoang Tran Ngoc[21] YOLO V5 82.1% 

6 Tian-Hao Wu [22] YOLO V5’S 83.36% 

7 Yang Wang [23] YOLO V7 81.9% 

8 Ade Syahputra [24] YOLO V8’S 78.3% 

9 Proposed Model 85% 

   

 

The table above shows that the proposed model achieves an mAP value of 85%, which 

is higher than the previous versions of YOLO models such as YOLO V7 (81.9%), YOLO 

V2 (78%), and YOLO V5 (82.1%). The model also outperforms YOLO V3 (83.4%) and 

YOLO V4 (74.3%), which shows an improvement in object detection and classification 

accuracy. This performance improvement indicates that the proposed model has a 

competitive advantage in more precise object detection over previous versions of YOLO. 

Furthermore, testing of the ngedatedotid application is carried out to evaluate system 

performance after the application of the YOLOv8 algorithm that has been integrated into 

the microservices architecture. The testing process includes validation of the crowd 

detection feature and real-time data processing performed on the application backend. 

Testing is done using black-box testing to ensure each service functions according to 

specifications without checking the internal code. The results obtained from blackbox 

testing are shown in Table 2 below: 

 

Table 2. Input File Testing 

No File Input 
Expected 

results 
Output 

Testing 

Results 

1 Model.json Insert files in the 

model folder on the 

back-end 

Load model 

configuration 

File 

executable 

Success 

2 serviceAccount

Key.json 

Insert files in the 

firebase folder on the 

back-end 

Load firebase 

configuration 

File 

executable 

Success 

 

From the black box testing table testing input files, it can be concluded that this 

application is running well and all input files run as expected and successfully run the 

input files. The following is table 3 which describes the function testing of the results of 

the integration of YOLO V8 with microservices architecture in ngedatedotid backend. 
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Table 3. Function Testing 

No Fungsi Input Expected results Output 
Testing 

Results 

1 Extraction Videos with objects Generate images 
Image per 

second 
Success 

2 Detection 
Images that contain 

objects 

Generates 

coordinates and 

accuracy 

Object 

detected 
Success 

3 Drawing 
Images that contain 

objects 

Generate 

bounding box 

with class label 

and accuracy 

value 

Bounding 

box 

detected 

Success 

4 Counting Class and accuracy 
Display the total 

calculation value 

Amount 

increased 
Success 

 

Table 3 above shows the test results of the integration of the YOLOv8 algorithm with 

microservices architecture on the backend of the ngedatedotid application which includes 

four main functions, namely extraction, detection, drawing, and counting. In the 

extraction function, the model successfully processes videos containing objects and 

generates images per second. The detection function shows that the model can detect the 

coordinates and accuracy of objects in the image well. Next, the drawing function 

displays the bounding box along with the class label and accuracy value of the detected 

object. Finally, the counting function successfully displays the total count of objects in the 

image with results according to the accuracy of the model. All test functions show 

successful results, indicating that the crowd detection and counting system using 

YOLOv8 has been well integrated into the backend of the ngedatedotid application and 

operates according to the expected specifications. 

The next test is to test the results of human detection, classification, and calculation. At 

this stage, the results of the three main processes of this web application are tested, 

namely detecting, classifying, and counting the number of humans using the YOLOv8 

algorithm and the object calculation process takes place when humans are detected. The 

results of this experiment use 1 video extracted 1 second per frame with a duration of 1 

minute 49 seconds which produces 109 images to see the success rate of this application 

in detecting, classifying, and counting the number of humans in realtime. The percentage 

of success rate is calculated using the following formula. 

   
 

 
   %         (1) 

Where k = percentage of success rate, n = number of successful trial data, m = number of 

observation data. The following figure 11 is the result of the detection, classification, and 

calculation of the 109 images. 

 

 
Figure 11. Comparison of Manual and Automatic calculation 
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The figure above shows a comparison of the number of people count results between 

the manual and automatic methods at 109 frames per second. The manual calculation 

(orange line) has a higher variation, with the number of detections ranging from 10 to 35 

objects per frame. Meanwhile, the automatic calculation (blue line) has a lower and more 

stable number of detections, ranging from 5 to 20 objects per frame. This significant 

difference indicates that manual detection is more sensitive to changes in the number of 

objects, while the automatic model still needs to be improved to achieve accuracy close to 

the manual results, especially on frames with high object density. This proves that this 

application works well and as desired by the researcher. The following table 4 shows the 

results of the human detection, classification, and calculation of the number of people: 

 

Table 4. Results of Detection, Classification, and calculation of the number of people test 

No Image 

Amount 

Calculated in 

the App 

Total Manual 

Calculation 

Percentage of 

Success 

1 

 

17 19 89% 

2 

 

18 19 95% 

 

Table 4 above shows the results of detection, classification, and headcount tests 

conducted using the app as well as the manual method. In the first image, the app 

successfully detected 17 people out of a total of 19 people counted manually, with a 

success percentage of 89%. In the second image, the app successfully detected 18 out of 

19 people, with a higher success percentage of 95%. These results show that the app has a 

fairly good detection capability and is close to the manual calculation, although there is a 

small difference in the number of detections. This high percentage of success indicates 

that the detection model has worked optimally in identifying “head-people” objects under 

stable environmental conditions. In future research, we can consider using YOLO V9-S 

which has been further developed so as to improve the accuracy in moving object 

detection[25]. 

 

4. Conclusion 
 The conclusion of this study shows that the application of the YOLOv8 algorithm to 

the ngedatedotid application has significantly improved the accuracy of crowd detection. 

The proposed model achieves a mean Average Precision (mAP) value of 85%, higher 

than previous versions of YOLO models such as YOLO V8'S (78.3%) and YOLO V7 

(81.9%). This performance improvement demonstrates the superiority of the YOLOv8 
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integration in detecting people objects in high-density environments, despite complex 

visual distractions. In addition, testing of the custom model shows detection success of up 

to 95% in certain scenarios, with high accuracy in identifying objects and providing real-

time crowd information. This proves that the proposed model is superior to previous 

conventional models. This research also emphasizes the importance of using 

microservices architecture integrated with RESTful APIs to facilitate communication 

between services, thereby increasing the flexibility and efficiency of data processing in 

applications. The combination of YOLOv8, custom model, and microservices architecture 

proved to be able to produce a system that is more responsive and adaptive to changing 

environmental conditions. For further research, it is recommended to explore the latest 

YOLO versions such as YOLO V9-S, as well as expand the variety of datasets to 

overcome challenges in lighting conditions and more complex variations in object 

positions. Optimization of model training and testing parameters in real-world 

environments also needs to be done to ensure the model can achieve better performance in 

real-world scenarios. 
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