Komparasi Pergerakan Saham Apple Dan Samsung Menggunakan Algoritma Support Vector Machine (SVM)
(1) Universitas Nusa Putra, Indonesia
(2) Universitas Nusa Putra, Indonesia
(3) Universitas Nusa Putra, Indonesia
(4) Universitas Nusa Putra, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Dasriyan Saputra, “‘Pengaruh Manfaat, Modal, Motivasi Dan Edukasi Terhadap Minat Dalam Berinvestasi Di Pasar Modal,’” J. Manaj. Dan Akunt., vol. 5, no. 2, pp. 178–190, 2018.
S. Kasus et al., “Prediksi Pergerakan Harga Saham dengan Metode Support Vector Machine ( SVM ) Menggunakan Trend Deterministic Data Preparation Program Studi Sarjana Ilmu Komputasi Fakultas Informatika Universitas Telkom Bandung,” 2018.
“PrediksiHarga…(HasbiYasin),” pp. 29–35.
“CMR Institute of Technology,” pp. 1–49, 2019.
Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham,” J. Responsif, vol. 1, no. 1, pp. 77–82, 2019.
F. Sembiring, D. Gustian, A. Erfina, and Y. Vikriansyah, “Analisis Tingkat Akurasi Algoritma Moving Average dalam Prediksi Pergerakan Uang Elektronik Bitcoin,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, p. 23, 2021, doi: 10.35889/jutisi.v10i1.577.
M. Awadalla, “The Analysis of Strategic Management of Samsung Electronics Company through the Generic Value Chain Model,” vol. 63, no. Ngcit 2014, pp. 75–79.
R. F. T. Wulandari and D. Anubhakti, “Implementasi Algoritma Support Vector Machine (Svm) Dalam Memprediksi Harga Saham Pt. Garuda Indonesia Tbk,” IDEALIS Indones. J. Inf. Syst., vol. 4, no. 2, pp. 250–256, 2021, doi: 10.36080/idealis.v4i2.2847.
W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain Informatics J., vol. 5, no. 2, p. 45, 2020, doi: 10.21111/fij.v5i2.4449.
M. Raehanun, “Analisis Support Vector Machine (SVM) Dalam Prediksi Permintaan Emas Perhiasan (Studi Kasus: Permintaan Emas Perhiasan dari Beberapa Negara Tertentu Periode Tahun 2000-2021),” vol. 1, pp. 105–112, 2019.
S. Analisis Kegiatan Trading dengan SVM, K. R. Dan, N. Resti Wardani, S. Saepudin, and C. Warman, “Sentimen Analisis Kegiatan Trading Pada Ap-likasi Twitter dengan Algoritma SVM, KNN Dan Random Forrest,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 2, pp. 863–870, 2022.
Y. Liu, Q. Zeng, J. Ordieres Meré, and H. Yang, “Anticipating Stock Market of the Renowned Companies: A Knowledge Graph Approach,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/9202457.
A. A. Z. Syahputra, A. D. Atika, M. A. Aslamsyah, M. C. Untoro, and W. Yulita, “Smartphone Price Grouping by Specifications using K-Means Clustering Method,” J. Tek. Inform. C.I.T Medicom, vol. 13, no. 2, pp. 64–74, 2021, doi: 10.35335/cit.vol13.2021.98.pp59-68.
Q. M. Ilyas, K. Iqbal, S. Ijaz, A. Mehmood, and S. Bhatia, “A Hybrid Model to Predict Stock Closing Price Using Novel Features and a Fully Modified Hodrick–Prescott Filter,” Electronics, vol. 11, no. 21, p. 3588, 2022, doi: 10.3390/electronics11213588.
Y. Song, “Stock Trend Prediction: Based on Machine Learning Methods,” ProQuest Diss. Theses, p. 43, 2018, [Online]. Available: https://search.proquest.com/docview/2031586457?accountid=49007%0Ahttp://www.yidu.edu.cn/educhina/educhina.do?artifact=&svalue=Stock+Trend+Prediction%3A+Based+on+Machine+Learning+Methods&stype=2&s=on%0Ahttp://sfx.cceu.org.cn:3410/bisu?url_ver=Z39.88-2004&r
R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 40–46, 2021, doi: 10.20895/inista.v4i1.387.
DOI: https://doi.org/10.30645/kesatria.v4i1.118
DOI (PDF): https://doi.org/10.30645/kesatria.v4i1.118.g112
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: