Prediksi Produksi Tanaman Perkebunan Kelapa Sawit di Pulau Sumatera Tahun 2023 dengan Algoritma Bayesian Regulation
(1) Universitas Asahan, Kisaran, Indonesia
(2) Universitas Asahan, Kisaran, Indonesia
(3) Universitas Asahan, Kisaran, Indonesia
(4) Universitas Asahan, Kisaran, Indonesia
(5) Universitas Asahan, Kisaran, Indonesia
(*) Corresponding Author
Abstract
Palm oil production has an essential role in the regional and national economy. Accurate and reliable predictions are fundamental in planning and decision-making in the oil palm plantation sector. This study aims to predict the production of oil palm plantations on the island of Sumatra in 2023 using the Bayesian Regulation algorithm. This method was chosen because it combines historical data and new information and considers the risk factors that affect palm oil production. Historical data on palm oil production on the island of Sumatra were obtained from the Central Bureau of Statistics and analyzed using the Bayesian Regulation algorithm. The oil palm production prediction model is evaluated using accuracy and prediction error metrics. The research results are expected to provide reliable and accurate predictions for palm oil production on the island of Sumatra in 2023. This research produces a reasonably high accuracy rate of 90% (10% margin of error) and a trim MSE level of 0.00388775674 with a target error of 0.009. The research results predict that palm oil production on the island of Sumatra will decrease compared to previous years (2018-2022). This prediction provides more precise insights to stakeholders such as farmers, producers, government, and industry players in production planning, resource management, budget allocation, and effective decision-making. This research also has the potential to contribute to the development of science, especially the development of more sophisticated and efficient prediction methods, both for palm oil production and other plantation sectors, using the Bayesian Regulation method.
Full Text:
PDFReferences
S. Triyana, A. Mila, F. Raymond, Nurbaiti, and W. Ina, “Perencanaan Pemerintah Dalam Peningkatan Produksi Dan Harga Kelapa Sawit Petani Di Desa Mumpa Pasca Pandemi Covid 19,” Jurnal Penelitian Dan Pengkajian Ilmiah Sosial Budaya (JPPISB), vol. 2, no. 1, pp. 135–139, 2023.
D. Anggraeni, “Analisis Industri Kelapa Sawit Di Kalimantan Selatan Dalam Perspektif Pembangunan Berkelanjutan Analysis Of The Palm Oil Industry In South Kalimantan From A Sustainable Development Perspective,” MRI : Jurnal Manajemen Riset Inovasi, vol. 1, no. 2, pp. 198–209, 2023.
T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012027, 2019.
V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics, vol. 2, no. 3, pp. 271–279, 2021.
R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan Usia Penduduk di Beberapa Negara Asia,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.
BPS, “Produksi Tanaman Perkebunan (Ribu Ton),” BPS, 2023. [Online]. Available: https://www.bps.go.id/indicator/54/132/1/produksi-tanaman-perkebunan.html. [Accessed: 23-Feb-2023].
P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.
E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, “Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama,” Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.
M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.
W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, Jul. 2019.
S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.
S. Aisyah, Z. Zulkifli, and P. A. Cakranegara, “Penerapan Algoritma Bayesian Regulation untuk Estimasi Posisi Cadangan Devisa Indonesia,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 205–211, 2022.
Safruddin, E. Efendi, R. M. Ch, and A. Wanto, “Pemanfaatan Algoritma BFGS Quasi-Newton untuk Melihat Potensi Perkembangan Luas Tanaman Kopi di Pulau Sumatera,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 473–483, 2023.
DOI: https://doi.org/10.30645/kesatria.v4i2.182
DOI (PDF): https://doi.org/10.30645/kesatria.v4i2.182.g181
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: