Penerapan Algoritma Regresi Linier Berganda Untuk Memprediksi Hasil panen Padi Di Kota Pagar Alam

Dedi Setiadi(1*), S Sasmita(2), Melza Yolanda(3),

(1) Institut Teknologi Pagar Alam, Indonesia
(2) Institut Teknologi Pagar Alam, Indonesia
(3) Institut Teknologi Pagar Alam, Indonesia
(*) Corresponding Author

Abstract


Many farmers experience crop failure. Apart from that, farmers do not know what factors most influence the crop yield, so farmers cannot anticipate crop failure. Based on these conditions, a prediction model is needed that is able to predict rice crop yields so that farmers can find out the causes of crop failure, the factors that most influence crop yields and make better estimates of what will happen in the future, so that farmers can make policies and measures to anticipate crop failure in the next planting. This research aims to predict rice harvest yields in Pagar Alam City so as to help farmers predict rice harvest more easily, farmers can take policies and actions to predict crop failure using a multiple linear regression algorithm. Development method. The system used is the waterfall method and testing using black box testing. The rice harvest prediction system is an innovative solution that aims to accurately estimate rice harvest yields in Pagar Alam City.


Full Text:

PDF

References


A. Saputra, “Sistem Prediksi Persediaan Obat Pada Apotek Menggunakan Metode Naive Bayes (Studi Kasus: Apotek Seger Waras, Cianjur),” 2020, [Online]. Available: Http://Eprints.Uty.Ac.Id/4874/

I. F. P. Ginting, D. Saripurna, And E. Fitriani, “Penerapan Data Mining Dalam Menentukan Pola Ketersediaan Stok Barang Berdasarkan Permintaan Konsumen Di Chykes Minimarket Menggunakan Algoritma Apriori,” J. Saintikom (Jurnal Sains Manaj. Inform. Dan Komputer), Vol. 20, No. 1, P. 28, 2021, Doi: 10.53513/Jis.V20i1.2504.

Y. Asohi And A. Andri, “Impelementasi Algoritma Regresi Linier Berganda Untuk Prediksi Penjualan,” J. Nas. Ilmu Komput., Vol. 1, No. 3, Pp. 149–158, 2020, Doi: 10.47747/Jurnalnik.V1i3.161.

E. Triyanto, H. Sismoro, And A. D. Laksito, “Implementasi Algoritma Regresi Linear Berganda Untuk Memprediksi Produksi Padi Di Kabupaten Bantul,” Rabit J. Teknol. Dan Sist. Inf. Univrab, Vol. 4, No. 2, Pp. 66–75, 2019, Doi: 10.36341/Rabit.V4i2.666.

E. Hartati, R. Indriyani, And I. Trianingsih, “Analisis Kepuasan Pengguna Website Smk Negeri 2 Palembang Menggunakan Regresi Linear Berganda,” Matrik J. Manajemen, Tek. Inform. Dan Rekayasa Komput., Vol. 20, No. 1, Pp. 47–58, 2020, Doi: 10.30812/Matrik.V20i1.736.

A. Prasetyo, S. Salahuddin, And A. Amirullah, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” J. Infomedia, Vol. 6, No. 2, P. 76, 2021, Doi: 10.30811/Jim.V6i2.2343.

L. S. Supriatin, “Penentuan Musim Tanam, Jenis Varietas, Dan Teknik Budidaya Tanaman Padi Terkait Mitigasi Emisi Metana (Ch4) (Determination Of Early Planting Season, Type Varieties, And Cultivation Techniques Of Rice As Mitigation To Methane Emission),” J. Mns. Dan Lingkung., Vol. 24, No. 1, P. 1, 2018, Doi: 10.22146/Jml.23077.

Alfiqra And F. Y. Alfizi, “Penerapan Market Basket Analysis Menggunakan Proses Kdd (Knowledge Discovery In Database) Sebagai Strategi Penjualan Produk Swalayan (Studi Kasus : Swalayan X) Alfiqra,” Pp. 509–516, 2018.

L. L. Kaamilah, “Analisis Kelompok Lansia Berdasarkan Kategori Usia Dengan Metode K-Means Clustering,” J. Ris. Ilmu Akunt., Vol. 2, No. 2, 2023.

D. P. Utomo And B. Purba, “Penerapan Datamining Pada Data Gempa Bumi Terhadap Potensi Tsunami Di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., Vol. 1, No. September, P. 846, 2019, Doi: 10.30645/Senaris.V1i0.91.

D. S. O. Panggabean, E. Buulolo, And N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” Jurikom (Jurnal Ris. Komputer), Vol. 7, No. 1, P. 56, 2020, Doi: 10.30865/Jurikom.V7i1.1947.

D. W. T. Putra And R. Andriani, “Unified Modelling Language (Uml) Dalam Perancangan Sistem Informasi Permohonan Pembayaran Restitusi Sppd,” J. Teknoif, Vol. 7, No. 1, P. 32, 2019, Doi: 10.21063/Jtif.2019.V7.1.32-39.

F. Hidayah, S. Santosa, And R. E. Putri, “Model Prediksi Hasil Panen Berdasarkan Pengukuran Non-Destruktif Nilai Klorofil Tanaman Padi Rice Yield Prediction Model Based On Nondestructive Measurements Of Rice Chlorophyll Values Paddy Leaf,” Agritech, Vol. 39, No. 4, Pp. 289–297, 2019.




DOI: https://doi.org/10.30645/kesatria.v5i2.353

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.353.g350

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: