Implementasi K-Means Clustering Dalam Analisa Soal Ujian CBT Universitas Baiturrahmah

Rico Anggara(1*), Sarjon Defit(2), Billy Hendrik(3),

(1) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(*) Corresponding Author

Abstract


Computer-based exams (CBT) are a type of exam where participants take the exam using a computer or digital device. CBT has become a common choice in exam administration. Exam question management is important for CBT success. Participants answer digital questions via a computer interface, and the results are processed automatically by the computer system. The results of this test can be used to assess student understanding and as a learning evaluation. This research aims to group exam questions based on participants' answers. The method used in this research is K-Means Clustering. This method has 5 stages, namely cluster center initialization, data grouping, calculation of new cluster centers, convergence and evaluation of results. This process repeats until the cluster center does not change any more or convergence has been achieved. Next, the K-Means Clustering algorithm is applied to group exam questions into appropriate clusters. This grouping process is carried out by considering the similarities between the exam questions based on the number of correct answers and the number of incorrect answers. Dataset source from UPT CBT, Baiturrahmah University. The question dataset consists of 100 exam questions that have been tested on students at the Faculty of Medicine, Baiturrahmah University. The results of this research can group exam questions into groups of difficult questions, medium questions and easy questions. This research can be a reference for academics in evaluating exam questions created by lecturers and can evaluate the level of understanding of students at Baiturrahmah University.

Full Text:

PDF

References


F. Mulianingsih, K. Anwar, F. A. Shintasiwi, And A. J. Rahma, “Program Studi Tadris Ilmu Pengetahuan Sosial Institut Agama Islam Negeri Kudus Artificial Intellegence Dengan Pembentukan Nilai Dan Karakter Di Bidang Pendidikan,” 2020. [Online].

Available: Http://Journal.Stainkudus.Ac.Id/Index.Php/Ijtimaia

M. Petrus Saptono And H. F. Widjasena, “Sekolah Berbasis Komputer Atau Computer Based Test (Cbt) Di Smk Negeri 1 Kabupaten Sorong.”

S. N. Safitri, Haryono Setiadi, And E. Suryani, “Educational Data Mining Using Cluster Analysis Methods And Decision Trees Based On Log Mining,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 6, No. 3, Pp. 448–456, Jul. 2022, Doi: 10.29207/Resti.V6i3.3935.

W. Sudrajat, I. Cholid, And J. Petrus, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Umkmmenggunakan Rapidminer,” P. 27.

Z. Mustakim And R. Kamal, “K-Means Clustering For Classifying The Quality Management Of Secondary Education In Indonesia,” Cakrawala Pendidikan, Vol. 40, No. 3, Pp. 725–737, Oct. 2021, Doi: 10.21831/Cp.V40i3.40150.

Y. N. Dewi, H. Rianto, C. Budihartanti, And F. W. Fibriany, “Penerapan Metode K-Means Dalam Menentukan Kelompok Pendalaman Materi Ujian Nasional,” Journal Of Information System, Applied, Management, Accounting And Research, Vol. 6, No. 1, P. 26, Feb. 2022, Doi: 10.52362/Jisamar.V6i1.670.

R. Nurfalah, Dwiza Riana, And Anton, “Identifikasi Citra Beras Menggunakan Algoritma Multi-Svm Dan Neural Network Pada Segmentasi K-Means,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 5, No. 1, Pp. 55–62, Feb. 2021, Doi: 10.29207/Resti.V5i1.2721.

R. S. D. Wijaya, Adiwijaya, Andriyan B Suksmono, And Tati Lr Mengko, “Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field Dan Algoritma K-Means,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 5, No. 1, Pp. 139–147, Feb. 2021, Doi: 10.29207/Resti.V5i1.2816.

N. A. Maori, “Metode Elbow Dalam Optimasi Jumlah Cluster Pada K-Means Clustering,” Jurnal Simetris, Vol. 14, 2023.

Zulkifli N, “Efektivitas Pelaksanaan Ujian Semester Menggunakan Computer Based Test,” 2022.

A. Riandy Agusta, “Development Of Learning Outcomes Assessment Instruments Using Computer Based Test (Cbt),” 2022.

K. H. Chun Et Al., “Novel Innovative Computer-Based Test (Inno-Cbt) Item Types For National Licensing Examinations For Health Care Professionals,” Bmc Med Educ, Vol. 23, No. 1, P. 560, Aug. 2023, Doi: 10.1186/S12909-023-04444-5.

S. Huh, “Application Of The Computer-Based Testing In Korean Medical Licensing Examination, The Emergence Of A Metaverse In Medical Education, Journal Metrics And Statistics, And Appreciation To Reviewers And Volunteers,” Journal Of Educational Evaluation For Health Professions, Vol. 19. Korea Health Personnel Licensing Examination Institute, 2022. Doi: 10.3352/Jeehp.2022.19.2.




DOI: https://doi.org/10.30645/kesatria.v5i2.367

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.367.g364

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: