Vehicle Classification in Electronic Toll Collection System Using YOLOv8

Mochammad Idham Triyunanto(1*), Amalia Zahra(2),

(1) Bina Nusantara University, Jakarta, Indonesia
(2) Bina Nusantara University, Jakarta, Indonesia
(*) Corresponding Author

Abstract


This research aims to initiate an automatization process in the method of classifying vehicle types in the Jasa Marga transaction service system, which is the largest toll road operator company in Indonesia. The method used is YOLOv8 which is the latest version of the YOLO algorithm which is state-of-the-art performance in image processing. The dataset used in this study consists of vehicle images obtained from transactional data in an electronic toll collection system operating on toll roads, comprising five vehicle classification classes. In the initial stage, the images are examined and processed using pre-processing techniques such as data cleaning, image masking and data annotation. Next, the YOLOv8 model is trained using the data and tested on a separate validation dataset to measure the model's performance. Based on the results of experiments that have been carried out in this research, the performance of the YOLOv8 model without handling imbalance data resulted in an accuracy of classification of vehicle class types of 91.4%, while the performance of the model that handled imbalance data using under-sampling resulted in an increase in classification accuracy of vehicle class types to 94.4 %.

Full Text:

PDF

References


R. Nur Isni, B. Santosa, O. Samuel Simanjuntak, J. Teknik Informatika Fakultas Teknik Industri UPN, Y. Jl Babarsari, and T. Yogyakarta, “E-Toll Collection pada Sistem Transaksi Tol Tertutup Dengan Metode Layanan Berbasis Lokasi Studi Kasus PT Jasa Marga (Persero), Tbk.,” 2020.

W. G. ’Triatmojo, “Begini Cara Gerbang Tol Mendeteksi Jenis Dan Golongan Kendaraan,” https://www.widodogroho.com/2019/08/begini-cara-gerbang-tol-mendeteksi.html.

Z. Sun, G. Bebis, and R. Miller, “On-Road Vehicle Detection: A Review,” 2006.

R. A. Hadi, G. Sulong, and L. E. George, “Vehicle Detection and Tracking Techniques: A Concise Review,” Signal Image Process, vol. 5, no. 1, pp. 1–12, Feb. 2014, doi: 10.5121/sipij.2014.5101.

A. Crouzil, L. Khoudour, P. Valiere, and D. N. Truong Cong, “Automatic vehicle counting system for traffic monitoring,” J Electron Imaging, vol. 25, no. 5, p. 051207, Jun. 2016, doi: 10.1117/1.jei.25.5.051207.

A. Titania et al., “Analisis Klasifikasi Mobil Pada Gardu Tol Otomatis (GTO) Menggunakan Convolutional Neural Network (CNN),” 2022.

R. H. Peña-González and M. A. Nuño-Maganda, “Computer vision based real-time vehicle tracking and classification system,” in Midwest Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc., Sep. 2014, pp. 679–682. doi: 10.1109/MWSCAS.2014.6908506.

M. Won, “Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey,” IEEE Access, vol. 8. Institute of Electrical and Electronics Engineers Inc., pp. 73340–73358, 2020. doi: 10.1109/ACCESS.2020.2987634.

B. S. Mokha and S. Kumar, “Identification and Classification: A Review of Computer Vision System for Vehicle from Online and Offline Videos,” Signal Image Process, vol. 6, no. 5, pp. 63–77, Jun. 2015, doi: 10.5121/sipij.2015.6505.

W. Swastika, M. Febriant Ariyanto, H. Setiawan, and P. Lucky Tirma Irawan, “Appropriate CNN architecture and optimizer for vehicle type classification system on the toll road,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Apr. 2019. doi: 10.1088/1742-6596/1196/1/012044.

A. Islam, M. T. Hossan, and Y. M. Jang, “Convolutional neural network scheme–based optical camera communication system for intelligent internet of vehicles,” Int J Distrib Sens Netw, vol. 14, no. 4, Apr. 2018, doi: 10.1177/1550147718770153.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online]. Available: http://arxiv.org/abs/1506.02640

A. ANHAR and R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, p. 466, Apr. 2023, doi: 10.26760/elkomika.v11i2.466.

S. Alghyaline, N. Kamel Taha El-omari, E. M. Al-khatib, and H. Y. Al-kharbshh, “RT-VC: An Efficient Real-Time Vehicle Counting Approach,” J Theor Appl Inf Technol, vol. 15, no. 7, 2019, [Online]. Available: www.jatit.org

V. Xuan Can, P. Xuan Vu, M. Rui-fang, V. Trong Thuat, V. Van Duy, and N. Duy Noi, “Vehicle Detection and Counting under Mixed Traffic Conditions in Vietnam using YOLOv4,” International Journal of Advanced Research Engineering and Technology (IJARET) in, vol. 12, pp. 722–730, 2021, doi: 10.34218/IJARET.12.2.2021.072.

S. K. Rajput et al., “Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System,” Sustainability (Switzerland), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159163.

E. R. Setyaningsih and M. S. Edy, “YOLOv4 dan Mask R-CNN Untuk Deteksi Kerusakan Pada Karung Komoditi,” Teknika, vol. 11, no. 1, pp. 45–52, Mar. 2022, doi: 10.34148/teknika.v11i1.419.

D. I. Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5.”

A. P. H. Telaumbanua, T. P. Larosa, P. D. Pratama, R. H. Fauza, and A. M. Husein, “Vehicle Detection and Identification Using Computer Vision Technology with the Utilization of the YOLOv8 Deep Learning Method,” sinkron, vol. 8, no. 4, pp. 2150–2157, Oct. 2023, doi: 10.33395/sinkron.v8i4.12787.

N. Al Mudawi et al., “Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences,” Sustainability (Switzerland), vol. 15, no. 19, Oct. 2023, doi: 10.3390/su151914597.

A. Osman Gökcan, L. Osman GÖKCAN, R. Çöteli̇, and A. Derya AVCI, “Detection and Classification of Vehicles by Using Traffic Video Based on YOLOv8,” Naples, Sep. 2023. [Online]. Available: https://www.umteb.org/tr

J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Apr. 2023, doi: 10.3390/make5040083.

I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023.

R. Bai, F. Shen, M. Wang, J. Lu, and Z. Zhang, “Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simpliied Model Complexity Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simplified Model Complexity,” 2023, doi: 10.21203/rs.3.rs-3085871/v1.

K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance Problems in Object Detection: A Review,” Aug. 2019, [Online]. Available: http://arxiv.org/abs/1909.00169




DOI: https://doi.org/10.30645/kesatria.v5i2.375

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.375.g372

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: