Vehicle Classification in Electronic Toll Collection System Using YOLOv8
(1) Bina Nusantara University, Jakarta, Indonesia
(2) Bina Nusantara University, Jakarta, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
R. Nur Isni, B. Santosa, O. Samuel Simanjuntak, J. Teknik Informatika Fakultas Teknik Industri UPN, Y. Jl Babarsari, and T. Yogyakarta, “E-Toll Collection pada Sistem Transaksi Tol Tertutup Dengan Metode Layanan Berbasis Lokasi Studi Kasus PT Jasa Marga (Persero), Tbk.,” 2020.
W. G. ’Triatmojo, “Begini Cara Gerbang Tol Mendeteksi Jenis Dan Golongan Kendaraan,” https://www.widodogroho.com/2019/08/begini-cara-gerbang-tol-mendeteksi.html.
Z. Sun, G. Bebis, and R. Miller, “On-Road Vehicle Detection: A Review,” 2006.
R. A. Hadi, G. Sulong, and L. E. George, “Vehicle Detection and Tracking Techniques: A Concise Review,” Signal Image Process, vol. 5, no. 1, pp. 1–12, Feb. 2014, doi: 10.5121/sipij.2014.5101.
A. Crouzil, L. Khoudour, P. Valiere, and D. N. Truong Cong, “Automatic vehicle counting system for traffic monitoring,” J Electron Imaging, vol. 25, no. 5, p. 051207, Jun. 2016, doi: 10.1117/1.jei.25.5.051207.
A. Titania et al., “Analisis Klasifikasi Mobil Pada Gardu Tol Otomatis (GTO) Menggunakan Convolutional Neural Network (CNN),” 2022.
R. H. Peña-González and M. A. Nuño-Maganda, “Computer vision based real-time vehicle tracking and classification system,” in Midwest Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc., Sep. 2014, pp. 679–682. doi: 10.1109/MWSCAS.2014.6908506.
M. Won, “Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey,” IEEE Access, vol. 8. Institute of Electrical and Electronics Engineers Inc., pp. 73340–73358, 2020. doi: 10.1109/ACCESS.2020.2987634.
B. S. Mokha and S. Kumar, “Identification and Classification: A Review of Computer Vision System for Vehicle from Online and Offline Videos,” Signal Image Process, vol. 6, no. 5, pp. 63–77, Jun. 2015, doi: 10.5121/sipij.2015.6505.
W. Swastika, M. Febriant Ariyanto, H. Setiawan, and P. Lucky Tirma Irawan, “Appropriate CNN architecture and optimizer for vehicle type classification system on the toll road,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Apr. 2019. doi: 10.1088/1742-6596/1196/1/012044.
A. Islam, M. T. Hossan, and Y. M. Jang, “Convolutional neural network scheme–based optical camera communication system for intelligent internet of vehicles,” Int J Distrib Sens Netw, vol. 14, no. 4, Apr. 2018, doi: 10.1177/1550147718770153.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online]. Available: http://arxiv.org/abs/1506.02640
A. ANHAR and R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, p. 466, Apr. 2023, doi: 10.26760/elkomika.v11i2.466.
S. Alghyaline, N. Kamel Taha El-omari, E. M. Al-khatib, and H. Y. Al-kharbshh, “RT-VC: An Efficient Real-Time Vehicle Counting Approach,” J Theor Appl Inf Technol, vol. 15, no. 7, 2019, [Online]. Available: www.jatit.org
V. Xuan Can, P. Xuan Vu, M. Rui-fang, V. Trong Thuat, V. Van Duy, and N. Duy Noi, “Vehicle Detection and Counting under Mixed Traffic Conditions in Vietnam using YOLOv4,” International Journal of Advanced Research Engineering and Technology (IJARET) in, vol. 12, pp. 722–730, 2021, doi: 10.34218/IJARET.12.2.2021.072.
S. K. Rajput et al., “Automatic Vehicle Identification and Classification Model Using the YOLOv3 Algorithm for a Toll Management System,” Sustainability (Switzerland), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159163.
E. R. Setyaningsih and M. S. Edy, “YOLOv4 dan Mask R-CNN Untuk Deteksi Kerusakan Pada Karung Komoditi,” Teknika, vol. 11, no. 1, pp. 45–52, Mar. 2022, doi: 10.34148/teknika.v11i1.419.
D. I. Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5.”
A. P. H. Telaumbanua, T. P. Larosa, P. D. Pratama, R. H. Fauza, and A. M. Husein, “Vehicle Detection and Identification Using Computer Vision Technology with the Utilization of the YOLOv8 Deep Learning Method,” sinkron, vol. 8, no. 4, pp. 2150–2157, Oct. 2023, doi: 10.33395/sinkron.v8i4.12787.
N. Al Mudawi et al., “Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences,” Sustainability (Switzerland), vol. 15, no. 19, Oct. 2023, doi: 10.3390/su151914597.
A. Osman Gökcan, L. Osman GÖKCAN, R. Çöteli̇, and A. Derya AVCI, “Detection and Classification of Vehicles by Using Traffic Video Based on YOLOv8,” Naples, Sep. 2023. [Online]. Available: https://www.umteb.org/tr
J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Apr. 2023, doi: 10.3390/make5040083.
I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023.
R. Bai, F. Shen, M. Wang, J. Lu, and Z. Zhang, “Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simpliied Model Complexity Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simplified Model Complexity,” 2023, doi: 10.21203/rs.3.rs-3085871/v1.
K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance Problems in Object Detection: A Review,” Aug. 2019, [Online]. Available: http://arxiv.org/abs/1909.00169
DOI: https://doi.org/10.30645/kesatria.v5i2.375
DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.375.g372
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: