Perancangan Sistem Deteksi Objek Menggunakan Deep Learning Untuk Mengetahui Ketersediaan Parkir Berbasis Web
(1) Universitas Nusa Putra, Sukabumi, Indonesia
(2) Universitas Nusa Putra, Sukabumi, Indonesia
(3) Universitas Nusa Putra, Sukabumi, Indonesia
(*) Corresponding Author
Abstract
Parking systems often use visual monitoring by parking guards via CCTV, who sometimes experience problems in finding available empty parking spaces. This can cause inaccuracies in directing parking users to available spaces, increasing traffic congestion around the parking area. Therefore, this research aims to design an object detection system using deep learning technology to ensure the availability of parking spaces through a web-based application using the Yolo v8 and prototype methods. Testing the essence of the system shows that object detection is carried out effectively, with box boundaries that correspond to the presence of vehicles in the parking lot. Web test results show consistency between the number of vehicles detected and the numbers displayed on empty and occupied parking slots. Usability testing involving 60 respondents showed a high level of satisfaction, with an average percentage of 91.20%, indicating the level of suitability of the system to user needs.
Full Text:
PDFReferences
W. Sumarno, U. Saepudin, and F. Zein Mar’ie Pangestu, “Analisis Kapasitas Parkir Off Street Pasar Wanaraja Kabupaten Garut,” J. Media Teknol., vol. 9, no. 1, pp. 96–104, 2022, doi: 10.25157/jmt.v9i1.2789.
A. C. Praniffa, A. Syahri, F. Sandes, U. Fariha, Q. A. Giansyah, and M. L. Hamzah, “Pengujian Black Box Dan White Box Sistem Informasi Parkir Berbasis Web Black Box and White Box Testing of Web-Based Parking Information System,” J. Test. dan Implementasi Sist. Inf., vol. 1, no. 1, pp. 1–16, 2023.
A. Ayudhawara, B. Satrio, W. Poetro, M. Qomaruddin, I. Sultan, and A. Semarang, “Deteksi Ketersediaan Tempat Parkir menggunakan Mask R-CNN (Studi Kasus : Fakultas Teknologi Industri Universitas Islam Sultan Agung),” Semin. Ris. Mahasiswa-Computer Electr. (SERIMA-CE, vol. 1, no. 1, pp. 245–251, 2023.
N. F. Utomo, B. Budiana, A. Jefiza, and F. Nakul, “Referensi 22,” 2023.
F. A. Azizi, A. L. Nurdin, M. Yunus, and A. Khamid, “Analisis Kapasitas Ruang Parkir Mobil di Kawasan Jalan Pancasila Kota Tegal Analysis of Car Parking Space Capacity in Jalan Pancasila Area of Tegal City,” Era Sains J. Penelit. Sains, Keteknikan dan Inform., vol. 1, no. 1, pp. 78–90, 2023.
A. Raup, W. Ridwan, Y. Khoeriyah, S. Supiana, and Q. Y. Zaqiah, “Deep Learning dan Penerapannya dalam Pembelajaran,” JIIP - J. Ilm. Ilmu Pendidik., vol. 5, no. 9, pp. 3258–3267, 2022, doi: 10.54371/jiip.v5i9.805.
Parung, L. J., S. S., Amelia., Prayogo, and D. N, “Penggunaan teknologi Blokchain Internet of Thingd dan Artifial Intelligence untuk mendukung kota cerdas,” J. Tek. Inform., p. 1131, 2021.
M. Firmansyah, M. Masrun, and I. D. K. Yudha S, “Esensi Perbedaan Metode Kualitatif Dan Kuantitatif,” Elastisitas - J. Ekon. Pembang., vol. 3, no. 2, pp. 156–159, 2021, doi: 10.29303/e-jep.v3i2.46.
L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” J. Nas. Ilmu Komput., vol. 2, no. 3, pp. 213–232, 2021, doi: 10.47747/jurnalnik.v2i3.534.
S. Yudha, Y. Rahmanto, and S. Styawati, “Implementasi Teknologi Berbasis Web untuk Efesiensi Waktu Pencarian Lahan Parkir,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 614–622, 2024, doi: 10.57152/malcom.v4i2.1269.
A. Muzaki, T. T. Mabruroh, R. Ibrahim, and R. Wulaningrum, “Deteksi Ketersediaan Lahan Parkir Dengan Menggunakan OpenCV,” Semin. Nas. Teknol. Sains, vol. 3, no. 1, pp. 237–244, 2024, doi: 10.29407/stains.v3i1.4291.
D. N. Nugroho and L. Anifah, “Perancangan Sistem Deteksi Objek Bola Dan Gawang Pada Robot Sepakbola Menggunakan Metode Darknet YOLO,” J. Inf. Eng. Educ. Technol., vol. 07, pp. 22–29, 2023.
Y. Findawati, Buku Ajar Rekayasa Perangkat Lunak. 2018. doi: 10.21070/2018/978-602-5914-09-6.
DOI: https://doi.org/10.30645/kesatria.v5i3.418
DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.418.g414
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: