Analisa Sentimen Twitter Vaksin Covid-19 di Indonesia dengan Metode Support Vector Machine

S Sulastri(1*), Fahad Abdul Nur(2),

(1) Universitas Stikubank Semarang, Indonesia
(2) Universitas Stikubank Semarang, Indonesia
(*) Corresponding Author

Abstract


In today's digital era, Twitter is very widely used by the public as a means of communication. These facilities provide freedom in expressing opinions and / or opinions on twitter social media. Opinions in social media twitter can be called tweets. Opinions that often arise are very diverse in expression and meaning in the context of the problem being discussed. Tweets analyzed in this study are related to the issue of the Coronavirus in Indonesia. The data used in this study, 500 tweet data with 350 training data and 150 test data. The tools used in the classification process is the Python programming language. Then for the method used in the classification is the vector support machine method with the sentiment data used, namely positive and negative. The results are given in the support vector machine method in a value of 66%, with a recall of 61% and a precision of 74%. Therefore, the support vector machine method is quite good in classifying.


Full Text:

PDF

References


Wikipedia, “Pandemi COVID-19 di Indonesia,” 2020. https://id.wikipedia.org/wiki/Pandemi_COVID-19_di_Indonesia. (accessed Dec. 13, 2020).

dkk. Turban, E., Decision Support Systems and Intelligent Systems. Yogyakarta: Andi Offset., 2005.

Sumarno and M. A. Rosid, “Classification of Student Complaints with the Naive Bayes and Literature Methods,” JOINCS (Journal Informatics, Network, Comput. Sci., vol. 3, pp. 1–7, 2020, doi: 10.21070/joincs.v3i0.711.

A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeeding Eng., vol. 2, no. 1, pp. 1–7, 2015.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” INTEGER J. Inf. Technol., vol. 2, no. 1, pp.32–41, 2017, [Online] .Available: https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Sentimen_Calon_Gubernur_D KI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Analisis-Sentimen-Calon-Gubernur-DKI-Jakarta- 2017-Di-Twitter.pdf.

U. Rofiqoh, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexion Based Feature,” J.Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 12, pp. 1725–1732, 2017, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/628.

A. V. Sudiantoro and E. Zuliarso, “Analisis Sentimen Twitter Menggunakan Text Mining Dengan Algoritma Naïve Bayes Classifier,” Pros. SINTAK 2018, pp. 398–401, 2018.

M. Syarifuddin, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” Inti Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020.

L. Nurhajati, R. Sukandar, R. C. Oktaviani, and X. A. Wijayanto, “Perbincangan Isu Corona COVID-19 di Media Daring dan Media Sosial di Indonesia,” Lemb. Penelitian, Publ. dan Pengabdi. Masy., pp. 1–27, 2020, [Online]. Available: https://www.researchgate.net/publication/340916589_Perbincangan_Isu_Corona_COVID-19_di_Media_Daring_dan_Media_Sosial_di_Indonesia__Big_Data_Analysis/link/5ea3d8fe45851553faace361/download.

B. M. Pintoko and K. M. L, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine,” J. Inform. Polinema, vol. 4, no. 2, p. 93, 2018, doi: 10.33795/jip.v4i2.152.

Andrybrew, “Crawling – Mining Twitter Data menggunakan R,” 2015. https://andrybrew.blog/2015/03/01/crawling- mining-twitter-data-menggunakan-r/ (accessed Dec. 13, 2020).

INFORMATIKALOGI, “Text Preprocessing,” 2016. https://informatikalogi.com/text-preprocessing/ (accessed Dec. 13, 2020).

S. T. Yuliana, “Anaisis Sentimen Lirik Lagu Indonesia Dengan Metode K-Nearest Neighbor,” Universitas Stikubank Semrang, 2018.

G. S. Abdillah, “Analisis Sentimen Media Sosial Twitter Terkait isu yang Terjadi pada Papua Dengan Metode Support Vector Machine,” Universitas Stikubank Semarang, 2019.




DOI: https://doi.org/10.30645/kesatria.v5i3.443

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.443.g438

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: