Pendeteksian Level Kualitas Modifikasi Citra Manusia Dalam Eksperimen Metode Error Level Analysis (ELA)

R Rantiasi(1*), AR. Himamunanto(2), Yo’el Pieter Sumihar(3),

(1) Universitas Kristen Immanuel, Yogyakarta, Indonesia
(2) Universitas Kristen Immanuel, Yogyakarta, Indonesia
(3) Universitas Kristen Immanuel, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Research on image processing methods has become increasingly diverse in modifying images with more attractive visuals. The results of visual modification of this image are often used to convey certain information that will often be found in various media. The method used to identify images that have been modified is the Error Level Analysis (ELA) method, which detects the quality level of a visual image compared to other images. So the method approach proposed in this research involves computing the visual components of images with shape, color and texture features. The method used in shape computing is Prewitt edge detection, while for color features using HSV color transformation and Grayscalling. The method used to identify texture is using the Gray Level Co-occurrence Matrix (GLCM). The urgency of the method proposed in this research is very important to keep up with the various image processing methods that are developing increasingly rapidly. The results of the research are the Error Level Analysis (ELA) method with an analysis approach to shape components using the edge detection method, analysis of color components using the HSV and Grayscalling color transformation methods, and analysis of texture components using the Gray-Level Co-Occurrence Matrix (GLCM) method. ) can be used to detect image authenticity based on the statistical output of processing data. The Error Level Analysis (ELA) method with identification of shape, color and texture shows the differences between the original image and the manipulated image, so that the method used in the research can be a recommendation in completing the system. It is hoped that the approach method in this research will become an instrument for identifying images that have been modified to avoid misuse of visual image information.

Full Text:

PDF

References


F. Harahap, “Deteksi Foto Manipulasi Dengan Tools Forensicallybeta Dan Imageforensic . Org Dengan Metode Error Level Analysis ( Ela ),” Tin Terap. Inform. Nusant., Vol. 2, No. 3, Pp. 159–164, 2021.

M. R. Rasyid, Z. Tahir, And N. Syafaruddin, “Digital Image Processing For Detecting Industrial Machine Work Failure With Quantization Vector Learning Method,” J. Pekommas, Vol. 4, No. 2, P. 131, 2019.

F. A. A. Putra, A. G. Sulaksono, L. T. Utomo, And A. R. Khamdani, “Klasifikasi Buah Dan Sayur Menggunakan Fitur Ekstraksi Hog Dan Metode Knn,” Jip (Jurnal Inform. Polinema), Vol. 10, No. 1, Pp. 45–52, 2023.

Y. N. Nabuasa, “Pengolahan Citra Digital Perbandingan Metode Histogram Equalization Dan Spesification Pada Citra Abu-Abu,” J-Icon, Vol. 7, No. 1, Pp. 87–95, 2019.

D. Satria, Y. Kartika, And H. Maulana, “Preprosesing Serta Normalisasi Pada Dataset Kupu- Kupu Untuk Ekstraksi Fitur Warna , Bentuk Dan Tekstur,” Complet. J. Comput. Electron. Telecommun., Vol. 1, No. 2, Pp. 1–8, 2019.

D. A. Febrianda, D. Andreswari, And E. P. Purwandari, “Sistem Autentifikasi Citra Digital Terintegrasi Dengan Error Level Analisys (Ela) Dan Color Filter Array (Cfa) Berbasis Web,” Rekursif, J., Vol. 4, No. 1, Pp. 45–56, 2016.

F. Mahardika, A. D. Khatulistian, And A. P. Kuncoro, “Review Foto Forensic . Com Dengan Teknik Error Level Analysis Dan Jpeg Untuk Mengetahui Citra Asli,” J. Inform. Pengemb. It , Vol. 03, No. 01, Pp. 71–75, 2018.

A. Wicaksono, N. Mardiyantoro, And H. Sibyan, “Penerapan Metode Error Level Analysis Untuk Mendeteksi Modifikasi Citra Digital,” Biner J. Ilm. Inform. Dan Komput., Vol. 1, No. 1, Pp. 62– 69, 2022.

L. Widiawati, “Akurasi Deteksi Tepi Wajah Dengan Metode Robert , Metode Prewitt Dan Metode Sobel,” J. Ilm. Mika Amik Al Muslim, Vol. 3, No. 2, Pp. 79–87, 2019.

K. Panggalih, W. Kurniawan, And W. Gata, “Implementasi Perbandingan Deteksi Tepi Pada Citra Digital Menggunakan Metode Roberst , Sobel , Prewitt Dan Canny Pendahuluan Terlebih Dahulu , Sehingga Pemrosesan Citra ( Image Processing ) Menjadi Teknologi Untuk Menyelesaikan Masalah Dalam Proses Pengol,” Infotek J. Inform. Dan Teknol., Vol. 5, No. 2, Pp. 337–347, 2022.

M. Z. Andrekha And Y. Huda, “Deteksi Warna Manggis Menggunakan Pengolahan Citra Dengan Opencv Python,” Voteteknika (Vocational Tek. Elektron. Dan Inform., Vol. 9, No. 4, P. 27, 2021.

D. A. Faroek And R. Umar, “Deteksi Keaslian Citra Menggunakan Metode Error Level Analysis ( Ela ) Dan Principal Component Analysis ( Pca ),” Format, Vol. 8, No. 2, Pp. 132–137, 2019.

E. Ndruru, “Penerapan Metode Error Level Analysis Dan Laplacian Of Gausian Untuk Deteksi Tepi Citra Ct Scan Paru-Paru,” J. Informatics Manag. Inf. Technol., Vol. 1, No. 1, Pp. 34–38, 2021.

R. Pramudiya, C. Asyraq, A. Kadafi, And P. Sardika, “Analisis Gambar Menggunakan Metode Grayscale Dan Hsv ( Hue , Saturation , Value ),” Just It J. Sist. Informasi, Teknol. Inf. Dan Komput., Vol. 14, No. 3, Pp. 174–180, 2024.

I. D. Damayanti, A. Michael, H. K. Y. Piopadang, And P. Setriyanti, “Klasifikasi Citra Daging Babi Dan Daging Kerbau Menggunakan Histogram Citra Dan Glcm,” J. Syst. Comput. Eng., Vol. 4, No. 2, Pp. 188–200, 2023.

P. N. Candra And A. Prapanca, “Klasifikasi Gambar Asli Dan Manipulasi Menggunakan Error Level Analysis ( Ela ) Sebagai Proses Komputasi Metode Convolutional Neural Network (Cnn),” Jinacs (Journal Informatics Comput. Sci., Vol. 02, No. 01, Pp. 9–18, 2020.

I. G. Nengah, B. Darmawan, G. Made, A. Sasmitha, And P. W. Buana, “Pengembangan Metode Pendeteksi Modifikasi Citra Menggunakan Metode Error Level Analysis,” Merpati, Vol. 7, No. 1, Pp. 29–36, 2019.

K. E. Purnama Et Al., “Analisis Forebsic Citra Digital Menggunakan Teknik Error Level Analysis Dan Metadata Berdasarkan Metode Nist,” Jati (Jurnal Mhs. Tek. Inform., Vol. 7, No. 2, Pp. 1100–1107, 2023.

E. Wahyudi, D. Triyanti, And I. Ruslianto, “Identifikasi Teks Dokumen Menggunakan Metode Profile Projection Dan Template Matching,” J. Coding Sist. Komput. Untan, Vol. 03, No. 2, Pp. 1– 10, 2015.

R. Widodo, A. W. Widodo, And A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (Glcm) Citra Buah Jeruk Keprok (Citrus Reticulata Blanco) Untuk Klasifikasi Mutu,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 2, No. 11, Pp. 5769–5776, 2018.




DOI: https://doi.org/10.30645/kesatria.v5i3.446

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.446.g441

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: