Machine Health Monitoring Using An Innovative Mechanical Approach
(1) Universitas Bina Bangsa, Indonesia
(2) Universitas Bina Bangsa, Indonesia
(3) Universitas Bina Bangsa, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
M. Yazdi, “Maintenance Strategies and Optimization Techniques,” 2024, pp. 43–58. doi: 10.1007/978-3-031-53514-7_3.
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep learning and its applications to machine health monitoring,” Mech. Syst. Signal Process., vol. 115, pp. 213–237, Jan. 2019, doi: 10.1016/j.ymssp.2018.05.050.
A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry,” Reliab. Eng. Syst. Saf., vol. 215, p. 107864, Nov. 2021, doi: 10.1016/j.ress.2021.107864.
C. Virginia Anikwe et al., “Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect,” Expert Syst. Appl., vol. 202, p. 117362, Sep. 2022, doi: 10.1016/j.eswa.2022.117362.
M. Greenhawt, J. Oppenheimer, and C. D. Codispoti, “A Practical Guide to Understanding Cost-Effectiveness Analyses,” J. Allergy Clin. Immunol. Pract., vol. 9, no. 12, pp. 4200–4207, Dec. 2021, doi: 10.1016/j.jaip.2021.10.006.
D. Glandon et al., “The State of Cost-Effectiveness Guidance: Ten Best Resources for CEA in Impact Evaluations,” J. Dev. Eff., vol. 15, no. 1, pp. 5–16, Jan. 2023, doi: 10.1080/19439342.2022.2034916.
H. Hegab, I. Shaban, M. Jamil, and N. Khanna, “Toward sustainable future: Strategies, indicators, and challenges for implementing sustainable production systems,” Sustain. Mater. Technol., vol. 36, p. e00617, Jul. 2023, doi: 10.1016/j.susmat.2023.e00617.
A. Soliman et al., “Innovative construction material technologies for sustainable and resilient civil infrastructure,” Mater. Today Proc., vol. 60, pp. 365–372, 2022, doi: 10.1016/j.matpr.2022.01.248.
Z. Xu, Y. Guo, and J. Homer Saleh, “Multi-objective optimization for sensor placement: An integrated combinatorial approach with reduced order model and Gaussian process,” Measurement, vol. 187, p. 110370, Jan. 2022, doi: 10.1016/j.measurement.2021.110370.
M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, “Significance of sensors for industry 4.0: Roles, capabilities, and applications,” Sensors Int., vol. 2, p. 100110, 2021, doi: 10.1016/j.sintl.2021.100110.
M. Romanssini, P. C. C. de Aguirre, L. Compassi-Severo, and A. G. Girardi, “A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery,” Eng, vol. 4, no. 3, pp. 1797–1817, Jun. 2023, doi: 10.3390/eng4030102.
T. D. Popescu, D. Aiordachioaie, and A. Culea-Florescu, “Basic tools for vibration analysis with applications to predictive maintenance of rotating machines: an overview,” Int. J. Adv. Manuf. Technol., vol. 118, no. 9–10, pp. 2883–2899, Feb. 2022, doi: 10.1007/s00170-021-07703-1.
M. Vishwakarma, R. Purohit, V. Harshlata, and P. Rajput, “Vibration Analysis & Condition Monitoring for Rotating Machines: A Review,” Mater. Today Proc., vol. 4, no. 2, pp. 2659–2664, 2017, doi: 10.1016/j.matpr.2017.02.140.
A. I. Paganelli et al., “Real-time data analysis in health monitoring systems: A comprehensive systematic literature review,” J. Biomed. Inform., vol. 127, p.
, Mar. 2022, doi: 10.1016/j.jbi.2022.104009.
H. K. Kondaveeti, N. K. Kumaravelu, S. D. Vanambathina, S. E. Mathe, and S. Vappangi, “A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations,” Comput. Sci. Rev., vol. 40, p. 100364, May 2021, doi: 10.1016/j.cosrev.2021.100364.
K. Gnana Sheela and A. Rose Varghese, “Machine Learning based Health Monitoring System,” Mater. Today Proc., vol. 24, pp. 1788–1794, 2020, doi: 10.1016/j.matpr.2020.03.603.
A. R. Al-Ali et al., “An IoT-Based Road Bridge Health Monitoring and Warning System,” Sensors, vol. 24, no. 2, p. 469, Jan. 2024, doi: 10.3390/s24020469.
K. Mettert, C. Lewis, C. Dorsey, H. Halko, and B. Weiner, “Measuring implementation outcomes: An updated systematic review of measures’ psychometric properties,” Implement. Res. Pract., vol. 1, p. 263348952093664, Jan. 2020, doi: 10.1177/2633489520936644.
DOI: https://doi.org/10.30645/kesatria.v5i3.450
DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.450.g445
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: