Enhancing Concrete Compressive Strength Prediction with Deep Learning: A Comparative Analysis of Model Architectures
(1) Universitas Katolik Indonesia Atma Jaya, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
M. Khan and C. McNally, “A holistic review on the contribution of civil engineers for driving sustainable concrete construction in the built environment,” Dev. Built Environ., p. 100273, 2023.
S. Tajasosi, A. Saradar, J. Barandoust, M. Mohtasham Moein, R. Zeinali, and M. Karakouzian, “Multi-criteria risk analysis of ultra-high performance concrete application in structures,” CivilEng, vol. 4, no. 3, pp. 1016–1035, 2023.
M. Ahmadi, A. G. Lonbar, A. Sharifi, A. T. Beris, M. Nouri, and A. S. Javidi, “Application of segment anything model for civil infrastructure defect assessment,” arXiv Prepr. arXiv2304.12600, 2023.
C. Arciniegas, “Exploring the Depths: A Basic Guide to Understanding and Classifying Soils in Geotechnical Engineering,” 2023.
J. A. Hernández-Torres, C. A. Rodr’iguez-González, J. Mac’ias, Á. M. Rodr’iguez-Pérez, J. J. Caparrós-Mancera, and J. Mac’ias, “Fuzzy Logic-Based Evaluation of Ancient Topographic Measurement Instruments and Mechanisms,” in International Symposium on History of Machines and Mechanisms, 2024, pp. 128–144.
M. Truscello, Infrastructural brutalism: Art and the necropolitics of infrastructure. MIT Press, 2020.
L. Zheng and C. Pornsing, “Prediction of airport road service life based on concrete structure characteristics,” Case Stud. Constr. Mater., vol. 20, p. e02814, 2024.
H. Li, A. Zhou, Y. Wu, L. Deng, K. Zhu, and F. Lu, “Research and Development of Self-Waterproofing Concrete for Tunnel Lining Structure and Its Impermeability and Crack Resistance Characteristics,” Materials (Basel)., vol. 16, no. 16, p. 5557, 2023.
Z. Guo et al., “A partially hollow BCC lattice structure with capsule-shaped cavities for enhancing load-bearing and energy absorption properties,” Eng. Struct., vol. 305, p. 117777, 2024.
Z. Li, X. Zhou, H. Ma, and D. Hou, Advanced concrete technology. John Wiley & Sons, 2022.
M. Nedeljković, J. Visser, B. Šavija, S. Valcke, and E. Schlangen, “Use of fine recycled concrete aggregates in concrete: A critical review,” J. Build. Eng., vol. 38, p. 102196, 2021.
B. Sun, Y. Sun, G. Ye, and G. De Schutter, “A mix design methodology of blast furnace slag and fly ash-based alkali-activated concrete,” Cem. Concr. Compos., vol. 140, p. 105076, 2023.
M. Afzal, Y. Liu, J. C. P. Cheng, and V. J. L. Gan, “Reinforced concrete structural design optimization: A critical review,” J. Clean. Prod., vol. 260, p. 120623, 2020.
H. Hao, K. Bi, W. Chen, T. M. Pham, and J. Li, “Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures,” Eng. Struct., vol. 277, p. 115477, 2023.
R. Wang, J. Zhang, Y. Lu, and J. Huang, “Towards designing durable sculptural elements: Ensemble learning in predicting compressive strength of fiber-reinforced nano-silica modified concrete,” Buildings, vol. 14, no. 2, p. 396, 2024.
G. Liu and B. Sun, “Concrete compressive strength prediction using an explainable boosting machine model,” Case Stud. Constr. Mater., vol. 18, p. e01845, 2023.
O. R. Abuodeh, J. A. Abdalla, and R. A. Hawileh, “Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques,” Appl. Soft Comput., vol. 95, p. 106552, 2020.
S. A. R. Shah, M. Azab, H. M. Seif ElDin, O. Barakat, M. K. Anwar, and Y. Bashir, “Predicting compressive strength of blast furnace slag and fly ash based sustainable concrete using machine learning techniques: an application of advanced decision-making approaches,” Buildings, vol. 12, no. 7, p. 914, 2022.
M. Regona, T. Yigitcanlar, B. Xia, and R. Y. M. Li, “Opportunities and adoption challenges of AI in the construction industry: A PRISMA review,” J. open Innov. Technol. Mark. Complex., vol. 8, no. 1, p. 45, 2022.
K. Rashid, M. U. Rehman, J. de Brito, and H. Ghafoor, “Multi-criteria optimization of recycled aggregate concrete mixes,” J. Clean. Prod., vol. 276, p. 124316, 2020.
M. Parsamehr, U. S. Perera, T. C. Dodanwala, P. Perera, and R. Ruparathna, “A review of construction management challenges and BIM-based solutions: perspectives from the schedule, cost, quality, and safety management,” Asian J. Civ. Eng., vol. 24, no. 1, pp. 353–389, 2023.
A. A. Setiawan, R. Soegiarso, H. Hardjasaputra, and others, “State of the art of deep learning method to predict the compressive strength of concrete,” Technol. Reports Kansai Univ., vol. 63, no. 6, pp. 7727–7737, 2021.
J. Tinoco, A. Alberto, P. da Venda, A. Gomes Correia, and L. Lemos, “A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures,” Neural Comput. Appl., vol. 32, no.
, pp. 8985–8991, 2020.
L. Li, S. Rong, R. Wang, and S. Yu, “Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review,” Chem. Eng. J., vol. 405, p. 126673, 2021.
W. Ben Chaabene, M. Flah, and M. L. Nehdi, “Machine learning prediction of mechanical properties of concrete: Critical review,” Constr. Build. Mater., vol. 260, p. 119889, 2020.
D. Ghunimat, A. E. Alzoubi, A. Alzboon, and S. Hanandeh, “Prediction of concrete compressive strength with GGBFS and fly ash using multilayer perceptron algorithm, random forest regression and k-nearest neighbor regression,” Asian J. Civ. Eng., vol. 24, no. 1, pp. 169–177, 2023.
K. Choudhary et al., “Recent advances and applications of deep learning methods in materials science,” npj Comput. Mater., vol. 8, no. 1, p. 59, 2022.
G. A. Lyngdoh, M. Zaki, N. M. A. Krishnan, and S. Das, “Prediction of concrete strengths enabled by missing data imputation and interpretable machine learning,” Cem. Concr. Compos., vol. 128, p. 104414, 2022.
J. O. Ukpata, D. E. Ewa, N. G. Success, G. U. Alaneme, O. N. Otu, and B. C. Olaiya, “Effects of aggregate sizes on the performance of laterized concrete,” Sci. Rep., vol. 14, no. 1, p. 448, 2024.
G. Stiglic, P. Kocbek, N. Fijacko, M. Zitnik, K. Verbert, and L. Cilar, “Interpretability of machine learning-based prediction models in healthcare,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 10, no. 5, p. e1379, 2020.
F. Soleimani and D. Hajializadeh, “State-of-the-art review on probabilistic seismic demand models of bridges: Machine-learning application,” Infrastructures, vol. 7, no. 5, p. 64, 2022.
V. Shanawad, “Cement Manufacturing Concrete Dataset.” 2020.
DOI: https://doi.org/10.30645/kesatria.v5i3.459
DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.459.g454
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: