Prediksi Penambahan Charging Port Untuk Bus Listrik Transjakarta Menggunakan Algoritma Decision Tree

Raihansa Romadhon(1), Rima Tamara Aldisa(2*),

(1) Universitas Nasional, Jakarta, Indonesia
(2) Universitas Nasional, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Transjakarta bus is one of the public transportation options used in cities with dense populations and severe congestion, aiming to facilitate mobility. This research focuses on the implementation of the Decision Tree algorithm to predict the movement of Transjakarta electric buses and determine the optimal placement of charging ports in each corridor. Based on the evaluation results, corridors 1, 4, 5, 6, 7, 11, 13, and 14 do not require additional charging facilities because the remaining battery capacity of the buses at the end of the journey is still above 30%. Conversely, corridors 2, 8, 9, 12, 3, and 10 need to be equipped with charging ports, especially for BYD K-9 and SKYWELL buses, considering the higher battery consumption of these buses, thus requiring additional charging before completing the route. The evaluation of the model's performance shows significant accuracy, with evaluation metrics such as precision, recall, and F1-score with a value of 100%, indicating adequate results for field implementation. This research contributes significantly to the field of public transportation, especially in the management of environmentally friendly electric buses.

Full Text:

PDF

References


bps.go.id, “Jumlah Penduduk Menurut Kabupaten/Kota di Provinsi DKI Jakarta (Jiwa), 2021-2023,” bps.go.id. Accessed: Aug. 20, 2024. [Online]. Available: https://jakarta.bps.go.id/indicator/12/1270/1/jumlah-penduduk-menurut-kabupaten-kota-di-provinsi-dki-jakarta-.html

ppid.transjakarta.co.id, “PPID Transjakarta,” ppid.transjakarta.co.id. Accessed: Aug. 20, 2024. [Online]. Available: https://ppid.transjakarta.co.id/

G. Zola, S. D. Nugraheni, A. A. Rosiana, D. A. Pambudy, and N. Agustanta, “Inovasi kendaraan listrik sebagai upaya meningkatkan kelestarian lingkungan dan mendorong pertumbuhan ekonomi hijau di Indonesia,” J. Public …, vol. 11, no. 3, pp. 159–170, 2023, [Online]. Available: https://journal.student.uny.ac.id/index.php/joppar/article/view/20712%0Ahttps://journal.student.uny.ac.id/index.php/joppar/article/viewFile/20712/18383

Dodi Nofri Yoliad, “Data mining Dalam Analisis Tingkat Penjualan Barang ElektronikMenggunakan Algoritma K-means,” Insearch (Information Syst. Res. J., vol. 3, no. 1, 2023.

K. Halim, D. Erny Herwindiati, and T. Sutrisno, “Penerapan Metode Decision Tree Untuk Prakiraan Cuaca Kota Bekasi,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 2, pp. 1–5, 2023, doi: 10.24912/jiksi.v11i2.26026.

V. A. Lestari, A. Y. Ananta, and P. Basudewa, “Sistem Informasi Prediksi Persediaan Obat Di Apotek Naylun Farma Menggunakan Holt-Winters,” J. Inform. Polinema, vol. 9, no. 2, pp. 229–236, 2023, doi: 10.33795/jip.v9i2.1289.

Y. Rifa’i, “Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset,” Cendekia Inov. Dan Berbudaya, vol. 1, no. 1, pp. 31–37, 2023, doi: 10.59996/cendib.v1i1.155.

A. T. Octa Nuryawan, M. Hasbullah, M. Rizal, M. F. Rajab, and N. Agustina, “Algoritma Decision Tree Untuk Analisis Sentimen Public Terhadap Marketplace Diindonesia,” Naratif J. Nas. Riset, Apl. dan Tek. Inform., vol. 5, no. 1, pp. 18–25, 2023, doi: 10.53580/naratif.v5i1.186.

R. Nurhidayat and K. E. Dewi, “Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 91–100, 2023, doi: 10.34010/komputa.v12i1.9458.




DOI: https://doi.org/10.30645/kesatria.v5i3.462

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.462.g457

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: