Application of Data Mining Techniques in Assessing the Performance of Vocational High School Students in Computer Engineering at SMK Negeri 1 Braja Selebah Using Support Vector Machines (SVM), Naive Bayes, and k-Nearest Neighbors (k-NN) Algorithms

Yoga Adi Putra(1), Handoyo WD Nugroho(2*), C Chairani(3), Joko Trilokai(4),

(1) IIB Darmajaya Lampung, Indonesia
(2) IIB Darmajaya Lampung, Indonesia
(3) IIB Darmajaya Lampung, Indonesia
(4) IIB Darmajaya Lampung, Indonesia
(*) Corresponding Author

Abstract


This study discusses the performance comparison of three classification algorithms: K-Nearest Neighbors (k-NN), Naive Bayes, and Support Vector Machines (SVM), in assessing student performance at a Vocational High School specializing in Computer Engineering. The objective of this research is to identify the most effective algorithm for classification based on various evaluation metrics such as accuracy, precision, recall, and F1-Score. The experimental results show that the SVM algorithm has the best performance with an accuracy of 93.2%, precision of 93.4%, recall of 93.2%, and F1-Score of 93.1%. Naive Bayes ranks second with an accuracy of 86.2%, precision of 86.8%, recall of 86.2%, and F1-Score of 86.4%. The k-NN algorithm is in the last position with an accuracy of 81.0%, precision of 81.0%, recall of 82.0%, and F1-Score of 80.0%. Therefore, the SVM algorithm is recommended as the best model for classification in the context of this research.

Full Text:

PDF

References


C. Menggunakan, H. Purnomo, and R. E. Pambudi, “Data Mining Untuk Memprediksi Prestasi Peserta Didik di SMKN 1 Penawartama Tulang Bawang Menggunakan C4.5,” pp. 515–524.

Y. A. Dalimunthe and E. Rahayu, “Pelatihan Data Mining Untuk Memilih Jurusan Kuliah Bagi Siswa Smk Swasta Mandiri Percut Sei Tuan,” Wahana Inov. J. Penelit. dan …, vol. 9, no. 2, pp. 183–188, 2020, [Online]. Available: https://jurnal.uisu.ac.id/index.php/wahana/article/view/3687

A. N. Putri, N. Wakhidah, and V. G. Utomo, “Pemanfaatan Data Mining untuk Media Pembelajaran di SMK Hidayah Semarang,” E-Dimas J. Pengabdi. Kpd. Masy., vol. 13, no. 3, pp. 487–491, 2022, doi: 10.26877/e-dimas.v13i3.5572.

M. Y. Fathoni, D. Darmansah, and D. Januarita, “Sistem Pendukung Keputusan Pemilihan Siswa Teladan Menggunakan Metode Simple Additive Weighting (SAW) Pada SMK Telkom Purwokerto,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 346–353, 2021, doi: 10.32736/sisfokom.v10i3.1202.

F. Huda Aminuddin, T. Djauhari, and A. Arjansyah, “Penentuan Jurusan Pada Smkn 1 Muaro Jambi Dengan Metode K-Means Clustering,” J. Akad., vol. 15, no. 1, pp. 76–82, 2022, doi: 10.53564/akademika.v15i1.846.

A. I. Rizmayanti, N. Hidayati, F. S. Nugraha, and W. Gata, “Penerapan Data Mining Untuk Memprediksi Kompetensi Siswa Menggunakan Metode Decission Tree ( Studi Kasus Smk Multicomp Depok ),” Swabumi, vol. 9, no. 1, pp. 9–18, 2021, doi: 10.31294/swabumi.v9i1.8363.

J. Triwidianti, F. Y. Alfian, and M. Prasojo, “Perbandingan Metode Data Mining Untuk Prediksi Prestasi Siswa Tingkat Pendidikan Menengah Kejuruan Pada Sekolah Menengah Kejuruan Negeri (SMKN 1) Gadingrejo Pringsewu Lampung,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. 2021, vol. 1, no. Smkn 1, pp. 126–133, 2021.

H. Susanto, “Faktor-faktor yang mempengaruhi kinerja guru sekolah menengah kejuruan,” J. Pendidik. Vokasi, vol. 2, no. 2, pp. 197–212, 2013, doi: 10.21831/jpv.v2i2.1028.

I. F. X. F. A. Felnditi, D. Arisandi, and T. Sutrisno, “Perancangan Sistem Rekomendasi Penjurusan Pada Sekolah Menengah Kejuruan Santo Paulus Menggunakan Metode K-Means Clustering,” J. Ilmu Komput. dan Sist. Inf., vol. 8, no. 1, p. 74, 2020, doi: 10.24912/jiksi.v8i1.11472.

H. Susanto and S. Sudiyatno, “Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu,” J. Pendidik. Vokasi, vol. 4, no. 2, pp. 222–231, 2014, doi: 10.21831/jpv.v4i2.2547.

K. Asih and L. A. Wulandhari, “Prediksi Keterserapan Siswa SMK Pada Dunia Industri Dengan Pendekatan Educational Data Mining,” vol. 15, no. 01, pp. 72–77, 2024, doi: 10.22441/jte.2024.v15i1.011.

E. Ndruru and R. Limbong, “Implementasi Data Mining Dalam Pengelompokan Jurusan yang Diminati Siswa SMK Negeri 1 Lolowa’u menggunakan Metode Clustering | Ndruru | MEANS (Media Informasi Analisa dan Sistem),” MEANS (Media Inf. Anal. dan Sist., vol. 3, no. 2, pp. 107–113, 2018, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/273/pdfdssdx11

Angga Kurniawan, “Implementasi Data Mining Algoritma C4.5 Untuk Memprediksi Kelulusan Uji Kompetensi Smk Teknik Komputer Dan Jaringan (Tkj) (Study Kasus: Smk Pembangunan Daerah Lubuk Pakam),” Angga Kurniawan, vol. 7, no. 1, pp. 5–13, 2019, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/1801

Ermanto, “Penerapan Data Mining Untuk Memprediksi Minat Siswa Yang Mendaftar DI SMK Al Amin Cibarusah,” Sigma J. Teknol. Pelita Bangsa, vol. 12, no. 3, 2021.

B. Hasmaulina, “Penerapan Data Mining Untuk Membentuk Kelompok Belajar Menggunakan Metode Clustering Di SMK Negeri 3 Seluma,” JUKOMIKA (Jurnal Ilmu Komput. dan Inform., vol. 4, no. 2, pp. 57–71, 2022, doi: 10.54650/jukomika.v4i2.368.




DOI: https://doi.org/10.30645/kesatria.v5i4.495

DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.495.g490

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: