Comparative Analysis of Deep Learning Models for Predicting Fan Actuator Status in IoT-Enabled Smart Greenhouses
(1) Universitas Katolik Indonesia Atma Jaya, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
A. D. Boursianis et al., “Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review,” Internet of Things, vol. 18, p. 100187, 2022.
M. S. Farooq, S. Riaz, M. A. Helou, F. S. Khan, A. Abid, and A. Alvi, “Internet of things in greenhouse agriculture: a survey on enabling technologies,
applications, and protocols,” IEEE Access, vol. 10, pp. 53374–53397, 2022.
M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart farming: Internet of Things (IoT)-based sustainable agriculture,” Agriculture, vol. 12, no. 10, p. 1745, 2022.
F. K. Shaikh, S. Karim, S. Zeadally, and J. Nebhen, “Recent trends in internet-of-things-enabled sensor technologies for smart agriculture,” IEEE Internet Things J., vol. 9, no. 23, pp. 23583–23598, 2022.
I. Ardiansah, N. Bafdal, E. Suryadi, and A. Bono, “Greenhouse monitoring and automation using Arduino: a review on precision farming and internet of things (IoT),” Int. J. Adv. Sci. Eng. Inf. Technol, vol. 10, no. 2, pp. 703–709, 2020.
D. Lo Presti et al., “Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture,” Biosens. Bioelectron., vol. 222, p. 115005, 2023.
R. R. Shamshiri et al., “Digitalization of agriculture for sustainable crop production: a use-case review,” Front. Environ. Sci., vol. 12, p. 1375193, 2024.
M. Ataei Kachouei, A. Kaushik, and M. A. Ali, “Internet of Things-Enabled Food
and Plant Sensors to Empower Sustainability,” Adv. Intell. Syst., vol. 5, no. 12, p. 2300321, 2023.
N. S. Abu et al., “Internet of things applications in precision agriculture: A review,” J. Robot. Control, vol. 3, no. 3, pp. 338–347, 2022.
H. X. Huynh, L. N. Tran, and N. Duong-Trung, “Smart greenhouse construction and irrigation control system for optimal Brassica Juncea development,” PLoS One, vol. 18, no. 10, p. e0292971, 2023.
R. R. Shamshiri, S. Shafian, I. A. Hameed, and W. J. Grichar, “Precision Agriculture: Emerging Technologies,” 2024.
W.-S. Kim, W.-S. Lee, and Y.-J. Kim, “A review of the applications of the internet of things (IoT) for agricultural automation,” J. Biosyst. Eng., vol. 45, pp. 385–400, 2020.
A. Monteiro, S. Santos, and P. Gonçalves, “Precision agriculture for crop and livestock farming—Brief review,” Animals, vol. 11, no. 8, p. 2345, 2021.
O. Gheibi, D. Weyns, and F. Quin, “Applying machine learning in self-adaptive systems: A systematic literature review,” ACM Trans. Auton. Adapt. Syst., vol. 15, no. 3, pp. 1–37, 2021.
R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive locomotion through nonlinear model-predictive control,” IEEE Trans. Robot., vol. 39, no. 5, pp. 3402–3421, 2023.
J. Su et al., “Large language models for forecasting and anomaly detection: A systematic literature review,” arXiv Prepr. arXiv2402.10350, 2024.
F. Zhong, J. K. Calautit, and Y. Wu, “Fault data seasonal imbalance and
insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations,” Energy, vol. 282, p. 128180, 2023.
Y. Yang and Z. Xu, “Rethinking the value of labels for improving class-imbalanced learning,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 19290–19301, 2020.
L. Alzubaidi et al., “A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications,” J. Big Data, vol. 10, no. 1, p. 46, 2023.
A. Grzenda et al., “Evaluating the machine learning literature: a primer and user’s guide for psychiatrists,” Am. J. Psychiatry, vol. 178, no. 8, pp. 715–729, 2021.
T. P. da Costa, D. M. B. da Costa, and F. Murphy, “A systematic review of real-time data monitoring and its potential application to support dynamic life cycle inventories,” Environ. Impact Assess. Rev., vol. 105, p. 107416, 2024.
H. Chen, H. Liu, X. Chu, Q. Liu, and D. Xue, “Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network,” Renew. Energy, vol. 172, pp. 829–840, 2021.
I. Ullah, M. Fayaz, M. Aman, and D. Kim, “Toward autonomous farming—a
novel scheme based on learning to prediction and optimization for smart greenhouse environment control,” IEEE Internet Things J., vol. 9, no. 24, pp. 25300–25323, 2022.
A. Agga, A. Abbou, M. Labbadi, Y. El Houm, and I. H. O. Ali, “CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production,” Electr. Power Syst. Res., vol. 208, p. 107908, 2022.
L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in agriculture robotics: A state-of-the-art review and challenges ahead,” Robotics, vol. 10, no. 2, p. 52, 2021.
F. Jimenez Lopez, A. F. Jimenez Lopez, and J. S. Castellanos Patiño, “Forecasting irrigation scheduling based on deep learning models using IoT,” LACCEI, vol. 1, no. 8, 2023.
Y. Yang et al., “Multistep ahead prediction of temperature and humidity in solar greenhouse based on FAM-LSTM model,” Comput. Electron. Agric., vol. 213, p. 108261, 2023.
C. Tomazzoli, E. Brentarolli, D. Quaglia, and S. Migliorini, “Estimating Greenhouse Climate Through Context-Aware Recurrent Neural Networks Over an Embedded System,” IEEE Trans. AgriFood Electron., 2024.
M. Kang, N. P. Nguyen, and B. Kwon, “Deep learning model for rapid temperature map prediction in transient convection process using conditional generative adversarial networks,” Therm. Sci. Eng. Prog., vol. 49, p. 102477, 2024.
J. Morales-Garc’ia, F. Terroso-Sáenz, and J. M. Cecilia, “A multi-model deep learning approach to address prediction imbalances in smart greenhouses,” Comput. Electron. Agric., vol. 216, p. 108537, 2024.
O. Eraliev and C.-H. Lee, “Performance analysis of time series deep learning models for climate prediction in indoor hydroponic greenhouses at different time intervals,” Plants, vol. 12, no. 12, p. 2316, 2023.
F. Forbicini, N. O. P. Vago, and P. Fraternali, “Time Series Analysis in Compressor-Based Machines: A Survey,” arXiv Prepr. arXiv2402.17802, 2024.
A. A. Mansour, A. Tilioua, and M. Touzani, “Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system,” Results Eng., vol. 21, p. 101886, 2024.
N. Javaid, U. Qasim, A. S. Yahaya, E. H. Alkhammash, M. Hadjouni, and others, “Non-technical losses detection using autoencoder and bidirectional gated recurrent unit to secure smart grids,” IEEE Access, vol. 10, pp. 56863–56875, 2022.
A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, p. 100258, 2022.
M. I. Lifta and W. D. Abdullah, “IoT Agriculture 2024: Smart Greenhouse Data.” 2024.
DOI: https://doi.org/10.30645/kesatria.v5i4.524
DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.524.g519
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: