Automated Detection of Black Pod Disease in Cocoa Fruits Using Convolutional Neural Network

Febbi Sena Lestari(1), H Harliana(2*), Fatra Nonggala Putra(3),

(1) Universitas Nahdlatul Ulama Blitar, Indonesia
(2) Universitas Nahdlatul Ulama Blitar, Indonesia
(3) Universitas Nahdlatul Ulama Blitar, Indonesia
(*) Corresponding Author

Abstract


Black pod disease is a severe disease affecting cocoa fruit, caused by the Phytophthora Palmivora fungus. This infection turns the fruit's surface dark brown to black, while the inside becomes rotten. Currently, identifying infected cocoa fruits is done manually through visual observation, which is prone to errors and inconsistency. This study aims to implement a Convolutional Neural Network (CNN) algorithm to classify images of black pod disease in cocoa fruits. The dataset consists of 1,500 images obtained through documentation and literature review, with 750 images of healthy cocoa fruits and 750 images of infected fruits. To determine the optimal configuration, the CNN model was tested across 15 scenarios with varying batch sizes and epochs. The results show that the fifth scenario, with a batch size of 32 and 50 epochs, achieved the best performance, with an accuracy of 97.33%, precision of 97.41%, recall of 97.33%, and an f1-score of 97.33%. Additionally, the model was further tested using 20 original images, achieving an accuracy of 90%. These results demonstrate that the CNN model developed effectively classifies cocoa fruit images affected by black pod disease, highlighting its potential for use in developing more accurate and efficient cocoa disease detection applications

Full Text:

PDF

References


V. Zikria, S. Sofyan, S. Safrida, and E. Susanti, “Analisis Wilayah dan Kontribusi Kakao Terhadap Pembangunan Daerah di Kabupaten Parigi Moutong,” J. Agriuma, vol. 4, no. 1, pp. 22–30, 2022, doi: 10.31289/agri.v4i1.7173.

W. Rumahlewang, H. R.D. Amanupunyo, and B. S. Tomia, “Kerusakan Buah Kakao Akibat Penyakit Busuk Buah (Phytopthora palmivora Butlher),” COMSERVA J. Penelit. dan Pengabdi. Masy., vol. 2, no. 7, pp. 956–962, 2022, doi: 10.59141/comserva.v2i7.427.

M. Minarni, E. Novira, E. Yulianti, and G. Yoga Swara, “Sistem Pakar Diagnosa Penyakit dan Hama Tanaman Kakao Dengan Metode Certainty Factor,” SATIN - Sains dan Teknol. Inf., vol. 8, no. 2, pp. 79–88, 2022, doi: 10.33372/stn.v8i2.901.

P. N. Indah, S. Sugiyarto, C. A. Putra, L. Endahwati, and H. Maulana, Pasca Panen Kakao & Pembuatan Sabun Kecantikan, 2nd ed. Surabaya: Unggul Pangestu Nirmala, 2021.

F. P. Soge, B. Deta, and D. B. Watomakin, “Penerapan Logika Fuzzy dalam Sistem Pakar Deteksi Hama dan Penyakit Tanaman Kakao Kecamatan Wulanggitang Flores Timur,” J. Kridatama Sains Dan Teknol., vol. 6, no. 01, pp.

–234, 2024, doi: 10.53863/kst.v6i01.1115.

S. Syaifuddin, O. Maliki, and H. W. Kamase, “Implementasi Sistem Pakar Android untuk Deteksi Penyakit Tanaman Coklat dengan Metode Certainty Factor,” Bull. Inf. Technol., vol. 4, no. 4, pp. 456–464, 2023, doi: 10.47065/bit.v4i4.1019.

A. Heri, W. Wahdaniah, and H. AP, “Sistem Pakar Diagnosa Penyakit Pada Tanaman Kakao Menggunakan Metode Dempster Shafer,” J. Comput. Inf. Syst. ( J-CIS ), vol. 6, no. 2, pp. 9–18, 2023, doi: 10.31605/jcis.v6i2.3428.

G. H. Yogiswara, R. Magdalena, H. F. T. S. P, F. T. Elektro, and U. Telkom, “Identifikasi Jenis Penyakit Pada Kakao Dengan Pengolahan Citra Digital Dan K-Nearest Neighbor,” E-Proceding Eng., vol. 3, no. 1, pp. 371–377, 2016.

D. S. Tan et al., “A framework for measuring infection level on cacao pods,” Proc. - 2016 IEEE Reg. 10 Symp. TENSYMP 2016, pp. 384–389, 2016, doi: 10.1109/TENCONSpring.2016.7519437.

A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.

I. Supiyani and N. Arifin, “Identifikasi Nomor Rumah Pada Citra Digital Menggunakan Neural Network,” Method. J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 18–21, 2022, doi: 10.46880/mtk.v8i1.921.

A. Jakaria, S. Mu’minah, D. Riana, and S. Hadianti, “Klasifikasi Varietas Buah Kiwi dengan Metode Convolutional Neural Networks Menggunakan Keras,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1309, 2021, doi: 10.30865/mib.v5i4.3166.

M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 311–318, 2021, doi: 10.25126/jtiik.2021824553.




DOI: https://doi.org/10.30645/kesatria.v6i1.543

DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.543.g538

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: